Suppr超能文献

一种用于神经元放电模式的隐马尔可夫模型方法。

A hidden Markov model approach to neuron firing patterns.

作者信息

Camproux A C, Saunier F, Chouvet G, Thalabard J C, Thomas G

机构信息

Départment de Biostatistique et Informatique Médicale, INSERM U 444, Paris, France.

出版信息

Biophys J. 1996 Nov;71(5):2404-12. doi: 10.1016/S0006-3495(96)79434-1.

Abstract

Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing.

摘要

神经元放电模式的分析与表征是神经生理学家和神经药理学家所感兴趣的。在本文中,我们提出了一种用于对单个神经元电活动进行建模的隐马尔可夫模型方法。基本上,该模型假设每个峰峰间期对应于神经元的几种可能状态之一。通过最大似然法将模型拟合到峰峰间期的实验序列,可估计潜在神经元状态的数量、对应于每个状态的峰峰间期的概率密度函数以及状态之间的转移概率。我们展示了该模型在三种药理条件下对蓝斑神经元记录分析中的应用。该模型在氟烷麻醉期间和从氟烷麻醉恢复期间区分出两种状态,在给予可乐定后区分出四种状态。转移概率为神经元放电机制提供了更多见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b7/1233730/99e56008c4c3/biophysj00041-0170-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验