Suppr超能文献

对具有弱相关性的脉冲序列速率变化进行多尺度检测。

Multi-scale detection of rate changes in spike trains with weak dependencies.

作者信息

Messer Michael, Costa Kauê M, Roeper Jochen, Schneider Gaby

机构信息

Institute of Mathematics, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany.

Institute of Neurophysiology, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany.

出版信息

J Comput Neurosci. 2017 Apr;42(2):187-201. doi: 10.1007/s10827-016-0635-3. Epub 2016 Dec 26.

Abstract

The statistical analysis of neuronal spike trains by models of point processes often relies on the assumption of constant process parameters. However, it is a well-known problem that the parameters of empirical spike trains can be highly variable, such as for example the firing rate. In order to test the null hypothesis of a constant rate and to estimate the change points, a Multiple Filter Test (MFT) and a corresponding algorithm (MFA) have been proposed that can be applied under the assumption of independent inter spike intervals (ISIs). As empirical spike trains often show weak dependencies in the correlation structure of ISIs, we extend the MFT here to point processes associated with short range dependencies. By specifically estimating serial dependencies in the test statistic, we show that the new MFT can be applied to a variety of empirical firing patterns, including positive and negative serial correlations as well as tonic and bursty firing. The new MFT is applied to a data set of empirical spike trains with serial correlations, and simulations show improved performance against methods that assume independence. In case of positive correlations, our new MFT is necessary to reduce the number of false positives, which can be highly enhanced when falsely assuming independence. For the frequent case of negative correlations, the new MFT shows an improved detection probability of change points and thus, also a higher potential of signal extraction from noisy spike trains.

摘要

通过点过程模型对神经元尖峰序列进行统计分析通常依赖于过程参数恒定的假设。然而,经验性尖峰序列的参数可能具有高度变异性,这是一个众所周知的问题,例如发放率。为了检验恒定发放率的零假设并估计变化点,已经提出了一种多重滤波器检验(MFT)和一种相应的算法(MFA),它们可以在独立的峰间间隔(ISI)的假设下应用。由于经验性尖峰序列在ISI的相关结构中通常表现出弱依赖性,我们在此将MFT扩展到与短程依赖性相关的点过程。通过在检验统计量中专门估计序列依赖性,我们表明新的MFT可以应用于各种经验性发放模式,包括正序列相关性和负序列相关性以及紧张性发放和爆发性发放。新的MFT应用于具有序列相关性的经验性尖峰序列数据集,模拟结果表明,与假设独立性的方法相比,其性能有所提高。在正相关性的情况下,我们的新MFT对于减少误报数量是必要的,当错误地假设独立性时,误报数量可能会大大增加。对于频繁出现的负相关性情况,新的MFT显示出变化点的检测概率有所提高,因此,从有噪声的尖峰序列中提取信号的潜力也更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验