Suppr超能文献

Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight.

作者信息

Clement G, Darlot C, Petropoulos A, Berthoz A

机构信息

Laboratoire de Physiologie de la Perception et de l'Action, CNRS/Collège de France, Paris.

出版信息

Acta Otolaryngol. 1995 Sep;115(5):603-9. doi: 10.3109/00016489509139374.

Abstract

The nystagmus and motion perception of two astronauts were recorded during Earth-vertical axis rotation and during off-vertical axis rotation (OVAR) before and after 7 days of spaceflight. Postflight, the peak velocity and duration of per- and postrotatory nystagmus during velocity steps about the Earth-vertical axis were the same as preflight values. During OVAR at constant velocity (45/s, tilt angles successively 5, 10, and 15 degrees), the mean horizontal slow-phase eye velocity (bias), produced by the 'velocity storage mechanism' in the vestibular system, and the peak-to-peak amplitude (modulation) in horizontal eye velocity and position, generated from the output of otolith afferents, were also the same before as after flight. There were, however, changes in the vertical eve position and in the perceived body motion during OVAR. The angle of the perceived body path described as a cone was larger in both astronauts postflight. One astronaut experienced either a large cone angle with its axis upright, or a smaller cone angle with its axis tilted backwards, accompanied by an upward vertical eye drift. These results suggest an increase in the sensitivity of the otolithic system after spaceflight and a longer period of readaptation to Earth's gravity for otolith-induced responses than for canal-induced responses. Our data support the hypothesis that just after spaceflight the CNS generally interprets changes in the otolith signals to be due to translation rather than to tilt.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验