Suppr超能文献

分段回归模型在生物医学研究中的应用。

Applications of segmented regression models for biomedical studies.

作者信息

Berman N G, Wong W K, Bhasin S, Ipp E

机构信息

Department of Pediatrics, Harbor-University of California Los Angeles Medical Center, Torrance 90502, USA.

出版信息

Am J Physiol. 1996 Apr;270(4 Pt 1):E723-32. doi: 10.1152/ajpendo.1996.270.4.E723.

Abstract

In many biological models, a relationship between variables may be modeled as a linear or polynomial function that changes abruptly when an independent variable obtains a threshold level. Usually, the transition point is unknown, and a major objective of the analysis is its estimation. This type of model is known as a segmented regression model. We present two methods, Gallant and Fuller's (J Am. Stat. Assoc. 68: 144-147, 1973) method and Tishler and Zang's (J. Am. Stat. Assoc. 76: 980-987, 1981) method, using nonlinear least-squares techniques for estimating the transition point. We give the following three examples: a hypoglycemia study, a testosterone study, and an estimate of age-cortisol relationship. Simulation techniques are used to compare the two methods. We conclude that these models provide useful information and that the two methods studied produce essentially equivalent results. We recommend that both methods be used to analyze a data set if possible to avoid problems due to local minima and that if the results do not agree, then evaluation of the likelihood function in the range of the estimates be used to determine the best estimate.

摘要

在许多生物学模型中,变量之间的关系可被建模为线性或多项式函数,当自变量达到阈值水平时该函数会突然变化。通常,转变点是未知的,分析的一个主要目标就是对其进行估计。这种类型的模型被称为分段回归模型。我们提出两种方法,即加兰特和富勒(《美国统计协会杂志》68: 144 - 147, 1973)的方法以及蒂什勒和赞格(《美国统计协会杂志》76: 980 - 987, 1981)的方法,使用非线性最小二乘法技术来估计转变点。我们给出以下三个例子:一项低血糖研究、一项睾酮研究以及对年龄 - 皮质醇关系的估计。使用模拟技术来比较这两种方法。我们得出结论,这些模型提供了有用信息,并且所研究的这两种方法产生的结果基本等效。我们建议,如果可能的话,使用这两种方法来分析数据集,以避免因局部最小值导致的问题,并且如果结果不一致,那么在估计范围内评估似然函数以确定最佳估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验