Maffei Facino R M, Carini M, Saibene L
Istituto Chimico Farmaceutico Tossicologico, Faculty of Pharmacy, University of Milan, Italy.
Arch Pharm (Weinheim). 1996 Oct;329(10):457-63. doi: 10.1002/ardp.19963291007.
The radical scavenging activity of tenoxicam against hydroxyl (HO.), superoxide (O2.-), and peroxyl (LOO.) radicals, all of them involved in the inflammatory reactions, has been tested in different cell-free systems and by different techniques. Tenoxicam is a good scavenger of both HO. radicals (IC50 = 56.7 microM), as determined by Electron Spin Resonance (ESR) spectroscopy with the spin trapping (5,5-dimethyl-1-pyrroline N-oxide, DMPO) technique, and O2.- radicals generated by the phenazine methosulfate/reduced beta-nicotinamide adenine dinucleotide (PMS/NADH) system. The high reactivity of the drug towards HO. was confirmed by the rate constant of reaction with HO. (k approximately 10(10) M-1s-1), determined by competition kinetic studies with N,N-dimethyl-4-nitrosoaniline. In addition at a microM level (1-5 microM) it dose-dependently prevents the phycoerythrin peroxidation induced by the water-soluble azoinitiator 2,2-azobis (2-amidinopropane) dihydrochloride (ABAP), indicating a quenching effect on aqueous peroxyl radicals. The HO.-entrapping capacity was confirmed in models more close to the in vivo situation: tenoxicam inhibits the HO.-induced depolymerization of hyaluronic acid already at 15 microM and the HO.-driven lipid peroxidation in phosphatidylcholine liposomes (PCL) with an IC50 of 10 microM. In this membrane model it delays at 1-10 microM level the decomposition of phosphatidylcholine hydroperoxides to short-chain alkenals (markers: total carbonyl functions as 2,4-dinitrophenylhydrazones and conjugated dienes). The high susceptibility of the drug to HO. attack is also demonstrated by its extensive degradation (HPLC studies) when irradiated with HO. radicals. The antioxidant component of tenoxicam evidenced in this study sheds some light on the hitherto undefined mechanism of the antiinflammatory action of the drug.
已通过不同的无细胞系统和不同技术,测试了替诺昔康对羟自由基(HO·)、超氧阴离子自由基(O₂⁻·)和过氧自由基(LOO·)的清除活性,所有这些自由基均参与炎症反应。替诺昔康是HO·自由基(IC50 = 56.7 microM)的良好清除剂,这是通过电子自旋共振(ESR)光谱结合自旋捕获(5,5-二甲基-1-吡咯啉N-氧化物,DMPO)技术测定的,同时它对硫酸吩嗪/还原型β-烟酰胺腺嘌呤二核苷酸(PMS/NADH)系统产生的O₂⁻·自由基也有清除作用。通过与N,N-二甲基-4-亚硝基苯胺的竞争动力学研究确定,该药物与HO·反应的速率常数(k约为10¹⁰ M⁻¹s⁻¹)证实了其对HO·的高反应活性。此外,在微摩尔水平(1 - 5 microM)时,它能剂量依赖性地防止水溶性偶氮引发剂2,2-偶氮双(2-脒基丙烷)二盐酸盐(ABAP)诱导的藻红蛋白过氧化,表明对水相过氧自由基有淬灭作用。在更接近体内情况的模型中证实了HO·捕获能力:替诺昔康在15 microM时就能抑制HO·诱导的透明质酸解聚,在磷脂酰胆碱脂质体(PCL)中对HO·驱动的脂质过氧化的IC50为10 microM。在这个膜模型中,它在1 - 10 microM水平时能延迟磷脂酰胆碱氢过氧化物分解为短链烯醛(标志物:作为2,4-二硝基苯腙的总羰基官能团和共轭二烯)。当用HO·自由基照射时,替诺昔康的广泛降解(HPLC研究)也证明了该药物对HO·攻击的高敏感性。本研究中证明的替诺昔康的抗氧化成分,为该药物迄今未明确的抗炎作用机制提供了一些线索。