Suppr超能文献

随机试验中治疗不依从及后续无反应的似然方法。

Likelihood methods for treatment noncompliance and subsequent nonresponse in randomized trials.

作者信息

O'Malley A James, Normand Sharon-Lise T

机构信息

Department of Health Care Policy, Harvard Medical School, 180 Longwood Avenue, Boston, Massachusetts 02115-5899, USA.

出版信息

Biometrics. 2005 Jun;61(2):325-34. doi: 10.1111/j.1541-0420.2005.040313.x.

Abstract

While several new methods that account for noncompliance or missing data in randomized trials have been proposed, the dual effects of noncompliance and nonresponse are rarely dealt with simultaneously. We construct a maximum likelihood estimator (MLE) of the causal effect of treatment assignment for a two-armed randomized trial assuming all-or-none treatment noncompliance and allowing for subsequent nonresponse. The EM algorithm is used for parameter estimation. Our likelihood procedure relies on a latent compliance state covariate that describes the behavior of a subject under all possible treatment assignments and characterizes the missing data mechanism as in Frangakis and Rubin (1999, Biometrika 86, 365-379). Using simulated data, we show that the MLE for normal outcomes compares favorably to the method-of-moments (MOM) and the standard intention-to-treat (ITT) estimators under (1) both normal and non-normal data, and (2) departures from the latent ignorability and compound exclusion restriction assumptions. We illustrate methods using data from a trial to compare the efficacy of two antipsychotics for adults with refractory schizophrenia.

摘要

虽然已经提出了几种在随机试验中考虑不依从或缺失数据的新方法,但不依从和无应答的双重影响很少同时得到处理。我们构建了一个双臂随机试验中治疗分配因果效应的最大似然估计量(MLE),假设治疗不依从为全有或全无,并允许后续出现无应答情况。使用期望最大化(EM)算法进行参数估计。我们的似然程序依赖于一个潜在依从状态协变量,该协变量描述了受试者在所有可能治疗分配下的行为,并如弗兰加基斯和鲁宾(1999年,《生物统计学》86卷,365 - 379页)所述刻画了缺失数据机制。通过模拟数据,我们表明,对于正态结局,在以下两种情况下,最大似然估计量优于矩估计法(MOM)和标准意向性分析(ITT)估计量:(1)数据为正态和非正态时;(2)偏离潜在可忽略性和复合排除限制假设时。我们使用一项比较两种抗精神病药物对难治性精神分裂症成人疗效的试验数据来说明这些方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验