Dietrich W
German Heart Center, Institute of Anesthesiology, Munich, Germany.
J Cardiovasc Pharmacol. 1996;27 Suppl 1:S50-7. doi: 10.1097/00005344-199600001-00011.
During cardiopulmonary bypass (CPB), contact-phase activation of factor XII, prekallikrein, and high molecular weight kininogen initiates the intrinsic pathway of coagulation. To prevent gross clot formation during CPB, heparin is commonly used as an anticoagulant. There is a wide variability in the sensitivity of individual patients to the actions of heparin. We did not find a significant correlation between plasma heparin levels and concentrations of D-dimers, thrombin-antithrombin III complexes (TAT), and prothrombin fragments F1+2 as markers of fibrinolysis and coagulation activation. In addition, heparin cannot completely inhibit thrombin formation and action and may play a central role in the coagulation disorders associated with CPB. F1+2 and TAT rise throughout the course of CPB and fibrin monomers are generated. Attempts to improve anti-coagulation using heparin-coated bypass circuits and specific inhibitors of thrombin have not thus far proven successful. The serine protease inhibitor aprotinin can inhibit contact-phase activation, as evidenced by generation of significantly fewer prothrombin fragments F1+2, thrombin-antithrombin III complexes, fibrinopeptide A, and fibrin monomers in aprotinin-treated patients undergoing cardiac surgery. Studies performed with a simulated CPB system have shown attenuation of plasma kallikrein C1 inhibitor complex (PKC1 I) with aprotinin and the recombinant Arg 15 aprotinin. This action of aprotinin to inhibit contact-phase activation may influence the degree of anticoagulation with heparin. Patients treated with aprotinin require approximately 20% less heparin to achieve an activated clotting time (ACT) of 400 s than control patients. Despite lower plasma concentrations of heparin, aprotinin-treated patients had significantly lower concentrations of the markers of coagulation activation (thrombin-antithrombin III complex, fibrin monomers, and antiplasmin-plasmin complex). We have also investigated the role of aprotinin in contact-phase [correction of contact phase] activation of fibrinolysis. Patients treated with aprotinin showed higher concentrations of single-chain urinary type plasminogen activator (scuPA) at the end of CPB compared with control patients, indicating reduced contact- phase [correction of contact phase] activation.
在体外循环(CPB)期间,因子Ⅻ、前激肽释放酶和高分子量激肽原的接触相激活启动了凝血的内源性途径。为防止CPB期间形成大量凝块,肝素通常用作抗凝剂。个体患者对肝素作用的敏感性存在很大差异。我们未发现血浆肝素水平与作为纤维蛋白溶解和凝血激活标志物的D - 二聚体、凝血酶 - 抗凝血酶Ⅲ复合物(TAT)以及凝血酶原片段F1 + 2浓度之间存在显著相关性。此外,肝素不能完全抑制凝血酶的形成和作用,并且可能在与CPB相关的凝血障碍中起核心作用。在CPB过程中F1 + 2和TAT升高,并且会生成纤维蛋白单体。使用肝素涂层体外循环回路和凝血酶特异性抑制剂来改善抗凝的尝试迄今尚未证明是成功的。丝氨酸蛋白酶抑制剂抑肽酶可以抑制接触相激活,在接受心脏手术的抑肽酶治疗患者中,凝血酶原片段F1 + 2、凝血酶 - 抗凝血酶Ⅲ复合物、纤维蛋白肽A和纤维蛋白单体的生成明显减少,这证明了这一点。使用模拟CPB系统进行的研究表明,抑肽酶和重组精氨酸15抑肽酶可使血浆激肽释放酶C1抑制剂复合物(PKC₁I)减少。抑肽酶抑制接触相激活的这种作用可能会影响肝素的抗凝程度。与对照患者相比,接受抑肽酶治疗的患者达到400秒活化凝血时间(ACT)所需的肝素量大约少20%。尽管肝素的血浆浓度较低,但接受抑肽酶治疗的患者凝血激活标志物(凝血酶 -抗凝血酶Ⅲ复合物、纤维蛋白单体和抗纤溶酶 - 纤溶酶复合物)的浓度明显较低。我们还研究了抑肽酶在纤维蛋白溶解接触相激活中的作用。与对照患者相比,接受抑肽酶治疗的患者在CPB结束时单链尿激酶型纤溶酶原激活剂(scuPA)浓度较高,表明接触相激活减少。