Suppr超能文献

全身性和局限性骨关节炎的标准。

Criteria for generalized and focal osteoarthritis.

作者信息

Dougados M, Nakache J P, Gueguen A

机构信息

Department of Rheumatology, Cochin Hospital, René-Descartes University, Paris, France.

出版信息

Rev Rhum Engl Ed. 1996 Oct;63(9):569-75.

PMID:8938865
Abstract

STUDY OBJECTIVE

to identify homogeneous, distinct subgroups of osteoarthritis patients based on distribution of osteoarthritis lesions.

STUDY DESIGN

cross-sectional, prospective, multicenter. Patients with osteoarthritis of the hip, knee, fingers, or spine.

DATA COLLECTED

clinical and radiologic features at 41 joint sites.

METHODS

multivariate statistical analysis including a) k-mean clustering analysis followed by ascending hierarchical classification b) and a tree-structured discriminant method to confirm and to characterize the subgroups obtained using the clustering method.

RESULTS

The 1021 patients were first classified into five categories with an error rate (obtained by cross-validation) of 7.6%. The tree obtained by segmentation took into account manifestations of osteoarthritis at the hands, knees and spine. Irrespective of the reason for seeking medical advice, patients with bilateral involvement of the fingers or with involvement of the spine and both femorotibial joints were classified as having generalized osteoarthritis; in contrast, focal osteoarthritis was defined as the absence of involvement of the fingers and of either the spine or the knees.

CONCLUSION

The statistical analysis provided a classification system that would be easy to use in everyday clinical practice. Prospective studies are needed to evaluate the potential clinical relevance of this system.

摘要

研究目的

根据骨关节炎病变分布确定骨关节炎患者的同质、不同亚组。

研究设计

横断面、前瞻性、多中心研究。纳入髋、膝、手指或脊柱骨关节炎患者。

收集的数据

41个关节部位的临床和放射学特征。

方法

多变量统计分析,包括a)k均值聚类分析,随后进行升序层次分类,b)以及一种树形判别方法,以确认并描述使用聚类方法获得的亚组。

结果

1021例患者首先被分为五类,交叉验证得到的错误率为7.6%。通过分割得到的树形图考虑了手部、膝部和脊柱的骨关节炎表现。无论就医原因如何,手指双侧受累或脊柱及双侧股胫关节受累的患者被归类为患有全身性骨关节炎;相比之下,局限性骨关节炎定义为手指未受累且脊柱或膝部未受累。

结论

统计分析提供了一个在日常临床实践中易于使用的分类系统。需要进行前瞻性研究以评估该系统的潜在临床相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验