Oliynyk M, Brown M J, Cortés J, Staunton J, Leadlay P F
Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
Chem Biol. 1996 Oct;3(10):833-9. doi: 10.1016/s1074-5521(96)90069-1.
Modular polyketide synthases govern the synthesis of a number of medically important antibiotics, and there is therefore great interest in understanding how genetic manipulation may be used to produce hybrid synthases that might synthesize novel polyketides. In particular, we aimed to show whether an individual domain can be replaced by a comparable domain from a different polyketide synthase to form a functional hybrid enzyme. To simplify the analysis, we have used our previously-developed model system DEBS1-TE, consisting of the first two chain-extension modules of the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea.
We show here that replacing the entire acyltransferase (AT) domain from module 1 of DEBS1-TE by the AT domain from module 2 of the rapamycin-producing polyketide synthase leads, as predicted, to the synthesis of two novel triketide lactones in good yield, in place of the two lactones produced by DEBS1-TE. Both of the novel products specifically lack a methyl group at C-4 of the lactone ring.
Although the AT domain is a core structural domain of a modular polyketide synthase, it has been swapped to generate a truly hybrid multienzyme with a rationally altered specificity of chain extension. Identical manipulations carried out on known polyketide antibiotics might therefore generate families of potentially useful analogues that are inaccessible by chemical synthesis. These results also encourage the belief that other domains may be similarly swapped.
模块化聚酮合酶控制着多种具有医学重要性的抗生素的合成,因此人们对了解如何通过基因操作来产生可能合成新型聚酮化合物的杂合合酶有着浓厚兴趣。特别是,我们旨在表明一个单独的结构域是否可以被来自不同聚酮合酶的可比结构域所取代,以形成一种功能性杂合酶。为了简化分析,我们使用了我们之前开发的模型系统DEBS1-TE,它由糖多孢红霉菌产生红霉素的聚酮合酶的前两个链延伸模块组成。
我们在此表明,用产生雷帕霉素的聚酮合酶模块2的酰基转移酶(AT)结构域替换DEBS1-TE模块1的整个AT结构域,正如所预测的那样,会以良好的产率合成两种新型三酮内酯,取代了DEBS1-TE产生的两种内酯。这两种新型产物在内酯环的C-4位均特异性地缺少一个甲基。
尽管AT结构域是模块化聚酮合酶的核心结构域,但它已被交换以产生一种具有合理改变的链延伸特异性的真正杂合多酶。因此,对已知聚酮类抗生素进行相同的操作可能会产生一系列化学合成无法获得的潜在有用类似物。这些结果也促使人们相信其他结构域可能也可以进行类似的交换。