Suppr超能文献

链霉菌遗传学要点。

Highlights of Streptomyces genetics.

机构信息

Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR5 7UH, UK.

出版信息

Heredity (Edinb). 2019 Jul;123(1):23-32. doi: 10.1038/s41437-019-0196-0. Epub 2019 Jun 12.

Abstract

Sixty years ago, the actinomycetes, which include members of the genus Streptomyces, with their bacterial cellular dimensions but a mycelial growth habit like fungi, were generally regarded as a possible intermediate group, and virtually nothing was known about their genetics. We now know that they are bacteria, but with many original features. Their genome is linear with a unique mode of replication, not circular like those of nearly all other bacteria. They transfer their chromosome from donor to recipient by a conjugation mechanism, but this is radically different from the E. coli paradigm. They have twice as many genes as a typical rod-shaped bacterium like Escherichia coli or Bacillus subtilis, and the genome typically carries 20 or more gene clusters encoding the biosynthesis of antibiotics and other specialised metabolites, only a small proportion of which are expressed under typical laboratory screening conditions. This means that there is a vast number of potentially valuable compounds to be discovered when these 'sleeping' genes are activated. Streptomyces genetics has revolutionised natural product chemistry by facilitating the analysis of novel biosynthetic steps and has led to the ability to engineer novel biosynthetic pathways and hence 'unnatural natural products', with potential to generate lead compounds for use in the struggle to combat the rise of antimicrobial resistance.

摘要

六十年前,放线菌(包括链霉菌属成员)被普遍认为是一种可能的中间群,它们具有细菌的细胞尺寸,但却具有真菌那样的菌丝体生长习性,而且人们对其遗传学几乎一无所知。我们现在知道它们是细菌,但具有许多原始特征。它们的基因组是线性的,具有独特的复制方式,不像几乎所有其他细菌那样是圆形的。它们通过一种接合机制将染色体从供体转移到受体,而这种机制与大肠杆菌的模式完全不同。它们的基因数量是典型杆状细菌(如大肠杆菌或枯草芽孢杆菌)的两倍,基因组通常携带 20 个或更多基因簇,这些基因簇编码抗生素和其他特殊代谢物的生物合成,只有一小部分在典型的实验室筛选条件下表达。这意味着,当这些“休眠”基因被激活时,将会有大量潜在有价值的化合物有待发现。链霉菌遗传学通过促进对新生物合成步骤的分析,彻底改变了天然产物化学,并使构建新型生物合成途径以及“非天然天然产物”成为可能,这可能为对抗抗菌药物耐药性的兴起而产生先导化合物提供了潜力。

相似文献

1
Highlights of Streptomyces genetics.
Heredity (Edinb). 2019 Jul;123(1):23-32. doi: 10.1038/s41437-019-0196-0. Epub 2019 Jun 12.
2
Soil to genomics: the Streptomyces chromosome.
Annu Rev Genet. 2006;40:1-23. doi: 10.1146/annurev.genet.40.110405.090639.
3
[Streptomycetes--producers of polyketide antibiotics].
Mikrobiol Z. 2003 Jan-Apr;65(1-2):168-81.
5
Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products.
Biotechnol Adv. 2019 Jan-Feb;37(1):1-20. doi: 10.1016/j.biotechadv.2018.10.003. Epub 2018 Oct 9.
6
Plasticity of the streptomyces genome-evolution and engineering of new antibiotics.
Curr Med Chem. 2005;12(14):1697-704. doi: 10.2174/0929867054367176.
7
Genome mining of Streptomyces ambofaciens.
J Ind Microbiol Biotechnol. 2014 Feb;41(2):251-63. doi: 10.1007/s10295-013-1379-y. Epub 2013 Nov 21.
8
Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365.
J Ind Microbiol Biotechnol. 2016 Mar;43(2-3):277-91. doi: 10.1007/s10295-015-1685-7. Epub 2015 Oct 3.
10
Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp.
Antonie Van Leeuwenhoek. 2018 May;111(5):743-751. doi: 10.1007/s10482-018-1052-6. Epub 2018 Feb 23.

引用本文的文献

3
Genome description of a potentially new species of Streptomyces isolated from the Indian Sundarbans mangrove.
Access Microbiol. 2024 Dec 16;6(12). doi: 10.1099/acmi.0.000892.v5. eCollection 2024.
4
Introduction to Nutrition and Cancer.
Cancer Treat Res. 2024;191:1-32. doi: 10.1007/978-3-031-55622-7_1.
5
Genomes and secondary metabolomes of spp. isolated from ssp. .
Front Microbiol. 2024 Jun 14;15:1408479. doi: 10.3389/fmicb.2024.1408479. eCollection 2024.
6
The roles of SARP family regulators involved in secondary metabolism in .
Front Microbiol. 2024 Mar 14;15:1368809. doi: 10.3389/fmicb.2024.1368809. eCollection 2024.
7
An atypical two-component system, AtcR/AtcK, simultaneously regulates the biosynthesis of multiple secondary metabolites in .
Appl Environ Microbiol. 2024 Jan 24;90(1):e0130023. doi: 10.1128/aem.01300-23. Epub 2023 Dec 19.
8
Molecular and Biochemical Characterization of Xylanase Produced by MS9, a Newly Isolated Soil Bacterium.
J Microbiol Biotechnol. 2024 Jan 28;34(1):176-184. doi: 10.4014/jmb.2309.09029. Epub 2023 Nov 17.
9
as a promising biological control agents for plant pathogens.
Front Microbiol. 2023 Nov 14;14:1285543. doi: 10.3389/fmicb.2023.1285543. eCollection 2023.
10
Methyl halide transferase-based gas reporters for quantification of filamentous bacteria in microdroplet emulsions.
Appl Environ Microbiol. 2023 Sep 28;89(9):e0076423. doi: 10.1128/aem.00764-23. Epub 2023 Sep 8.

本文引用的文献

1
Fungal secondary metabolism: regulation, function and drug discovery.
Nat Rev Microbiol. 2019 Mar;17(3):167-180. doi: 10.1038/s41579-018-0121-1.
2
Short-chain ketone production by engineered polyketide synthases in Streptomyces albus.
Nat Commun. 2018 Nov 1;9(1):4569. doi: 10.1038/s41467-018-07040-0.
3
Engineering strategies for rational polyketide synthase design.
Nat Prod Rep. 2018 Oct 17;35(10):1070-1081. doi: 10.1039/c8np00030a.
4
Spreading the news about the novel conjugation mechanism in Streptomyces bacteria.
Environ Microbiol Rep. 2018 Oct;10(5):503-510. doi: 10.1111/1758-2229.12659. Epub 2018 Aug 8.
5
Engineering enzymatic assembly lines for the production of new antimicrobials.
Curr Opin Microbiol. 2018 Oct;45:140-148. doi: 10.1016/j.mib.2018.04.005. Epub 2018 May 4.
6
RiPP antibiotics: biosynthesis and engineering potential.
Curr Opin Microbiol. 2018 Oct;45:61-69. doi: 10.1016/j.mib.2018.02.010. Epub 2018 Mar 10.
8
Diversity oriented biosynthesis via accelerated evolution of modular gene clusters.
Nat Commun. 2017 Oct 31;8(1):1206. doi: 10.1038/s41467-017-01344-3.
9
Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights.
Nat Prod Rep. 2017 Jul 1;34(7):712-783. doi: 10.1039/c7np00010c. Epub 2017 Jun 26.
10
Telomere associated primase Tap repairs truncated telomeres of Streptomyces.
Nucleic Acids Res. 2017 Jun 2;45(10):5838-5849. doi: 10.1093/nar/gkx189.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验