Suppr超能文献

Identification and characterization of the CLK1 gene product, a novel CaM kinase-like protein kinase from the yeast Saccharomyces cerevisiae.

作者信息

Melcher M L, Thorner J

机构信息

Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA.

出版信息

J Biol Chem. 1996 Nov 22;271(47):29958-68. doi: 10.1074/jbc.271.47.29958.

Abstract

The CLK1 gene of Saccharomyces cerevisiae encodes a 610-residue protein kinase that resembles known type II Ca2+/calmodulin-dependent protein kinases (CaM kinases), including the CMK1 and CMK2 gene products from the same yeast. The Clk1 kinase domain is preceded by a 162-residue N-terminal extension, followed by a 132-residue C-terminal extension (which contains a basic segment resembling known calmodulin-binding sites) and is as similar to mammalian CaM kinase (38% identity to rat CaM kinase alpha) as it is to yeast CaM kinase (37% identity to Cmk2). However, Clk1 shares 52% identity with Rck1, another putative protein kinase encoded in the S. cerevisiae genome. Clk1 tagged with a c-myc epitope (expressed in yeast) and a GST-Clk1 fusion (expressed in bacteria) underwent autophosphorylation and phosphorylated an exogenous substrate (yeast protein synthesis elongation factor 2), primarily on Ser. Neither Clk1 activity was stimulated by purified yeast calmodulin (CMD1 gene product), with or without Ca2+; no association of Clk1 with Cmd1 was detectable by other methods. C-terminally truncated Clk1(Delta487-610) was growth-inhibitory when overexpressed, whereas catalytically inactive Clk1(K201R Delta487-610) was not, suggesting that the C terminus is a negative regulatory domain. Using immunofluorescence, Clk1 was localized to the cytosol and excluded from the nucleus. A clk1Delta mutant, a clk1Delta rck1Delta double mutant, a clk1Delta cmk1Delta cmk2Delta triple mutant, and a clk1Delta rck1Delta cmk1Delta cmk2Delta quadruple mutant were all viable and manifested no other overt growth phenotype.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验