Fohlmeister J F, Poppele R E, Purple R L
J Gen Physiol. 1977 Jun;69(6):815-48. doi: 10.1085/jgp.69.6.815.
Recognition of nonlinearities in the neuronal encoding of repetitive spike trains has generated a number of models to explain this behavior. Here we develop the mathematics and a set of tests for two such models: the leaky integrator and the variable-gamma model. Both of these are nearly sufficient to explain the dynamic behavior of a number of repetitively firing, sensory neurons. Model parameters can be related to possible underlying basic mechanisms. Summed and nonsummed, spike-locked negative feedback are examined in conjunction with the models. Transfer functions are formulated to predict responses to steady state, steps, and sinusoidally varying stimuli in which output data are the times of spike-train events only. An electrical analog model for the leaky integrator is tested to verify predicted responses. Curve fitting and parameter variation techniques are explored for the purpose of extracting basic model parameters from spike train data. Sinusoidal analysis of spike trains appear to be a very accurate method for determining spike-locked feedback parameters, and it is to a large extent a model independent method that may also be applied to neuronal responses.
对重复脉冲序列神经元编码中的非线性的认识催生了许多模型来解释这种行为。在此,我们为两个这样的模型——泄漏积分器和可变伽马模型——建立数学理论并开展了一系列测试。这两个模型几乎足以解释许多重复放电的感觉神经元的动态行为。模型参数可能与潜在的基本机制有关。结合这些模型,研究了总和与非总和的、与脉冲锁定的负反馈。构建传递函数以预测对稳态、阶跃和正弦变化刺激的响应,其中输出数据仅为脉冲序列事件的时间。对泄漏积分器的电模拟模型进行测试以验证预测的响应。探索了曲线拟合和参数变化技术,以便从脉冲序列数据中提取基本模型参数。脉冲序列的正弦分析似乎是确定与脉冲锁定的反馈参数的一种非常准确的方法,并且在很大程度上是一种与模型无关的方法,也可应用于神经元反应。