Suppr超能文献

对小叶板切向神经元的全面神经解剖学研究及其对视流敏感性的预测。

A comprehensive neuroanatomical survey of the Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity.

作者信息

Zhao Arthur, Nern Aljoscha, Koskela Sanna, Dreher Marisa, Erginkaya Mert, Laughland Connor W, Ludwigh Henrique, Thomson Alex, Hoeller Judith, Parekh Ruchi, Romani Sandro, Bock Davi D, Chiappe Eugenia, Reiser Michael B

机构信息

Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA.

Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.

出版信息

bioRxiv. 2023 Oct 17:2023.10.16.562634. doi: 10.1101/2023.10.16.562634.

Abstract

Flying insects exhibit remarkable navigational abilities controlled by their compact nervous systems. , the pattern of changes in the visual scene induced by locomotion, is a crucial sensory cue for robust self-motion estimation, especially during rapid flight. Neurons that respond to specific, large-field optic flow patterns have been studied for decades, primarily in large flies, such as houseflies, blowflies, and hover flies. The best-known optic-flow sensitive neurons are the large tangential cells of the dipteran lobula plate, whose visual-motion responses, and to a lesser extent, their morphology, have been explored using single-neuron neurophysiology. Most of these studies have focused on the large, Horizontal and Vertical System neurons, yet the lobula plate houses a much larger set of 'optic-flow' sensitive neurons, many of which have been challenging to unambiguously identify or to reliably target for functional studies. Here we report the comprehensive reconstruction and identification of the Lobula Plate Tangential Neurons in an Electron Microscopy (EM) volume of a whole brain. This catalog of 58 LPT neurons (per brain hemisphere) contains many neurons that are described here for the first time and provides a basis for systematic investigation of the circuitry linking self-motion to locomotion control. Leveraging computational anatomy methods, we estimated the visual motion receptive fields of these neurons and compared their tuning to the visual consequence of body rotations and translational movements. We also matched these neurons, in most cases on a one-for-one basis, to stochastically labeled cells in genetic driver lines, to the mirror-symmetric neurons in the same EM brain volume, and to neurons in an additional EM data set. Using cell matches across data sets, we analyzed the integration of optic flow patterns by neurons downstream of the LPTs and find that most central brain neurons establish sharper selectivity for global optic flow patterns than their input neurons. Furthermore, we found that self-motion information extracted from optic flow is processed in distinct regions of the central brain, pointing to diverse foci for the generation of visual behaviors.

摘要

飞行昆虫展现出由其紧凑的神经系统控制的卓越导航能力。视流,即由运动引起的视觉场景变化模式,是进行稳健的自我运动估计的关键感官线索,尤其是在快速飞行期间。数十年来,人们主要在诸如家蝇、丽蝇和食蚜蝇等大型苍蝇中研究对特定大视野视流模式做出反应的神经元。最著名的视流敏感神经元是双翅目小叶板的大型切向细胞,其视觉运动反应以及在较小程度上其形态,已通过单神经元神经生理学进行了探索。这些研究大多集中在大型的水平和垂直系统神经元上,然而小叶板中还存在大量其他的“视流”敏感神经元,其中许多神经元难以明确识别或可靠地用于功能研究。在此,我们报告了在全脑电子显微镜(EM)图像中对小叶板切向神经元的全面重建和识别。这份包含58个小叶板切向神经元(每个脑半球)的目录包含了许多首次在此描述的神经元,并为系统研究将自我运动与运动控制联系起来的神经回路提供了基础。利用计算解剖学方法,我们估计了这些神经元的视觉运动感受野,并将它们的调谐与身体旋转和平移运动的视觉结果进行了比较。我们还在大多数情况下将这些神经元与基因驱动系中随机标记的细胞、同一EM脑图像中的镜像对称神经元以及另一个EM数据集中的神经元进行了一对一匹配。通过跨数据集的细胞匹配,我们分析了小叶板切向神经元下游神经元对视流模式的整合,发现大多数中枢脑神经元对全局视流模式建立了比其输入神经元更敏锐的选择性。此外,我们发现从视流中提取的自我运动信息在中枢脑的不同区域进行处理,这表明视觉行为的产生有不同的焦点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/833c/10614863/cba30f611491/nihpp-2023.10.16.562634v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验