Suppr超能文献

电子病历中概念识别的自动化:提取剂量信息的一项实验。

Automating concept identification in the electronic medical record: an experiment in extracting dosage information.

作者信息

Evans D A, Brownlow N D, Hersh W R, Campbell E M

机构信息

CLARITECH Corporation, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Proc AMIA Annu Fall Symp. 1996:388-92.

Abstract

We discuss the development and evaluation of an automated procedure for extracting drug-dosage information from clinical narratives. The process was developed rapidly using existing technology and resources, including categories of terms from UMLS96. Evaluations over a large training and smaller test set of medical records demonstrate an approximately 80% rate of exact and partial matches' on target phrases, with few false positives and a modest rate of false negatives. The results suggest a strategy for automating general concept identification in electronic medical records.

摘要

我们讨论了一种从临床记录中提取药物剂量信息的自动化程序的开发与评估。该程序利用现有技术和资源迅速开发而成,包括来自UMLS96的术语类别。对大量训练集和较小测试集的病历进行评估表明,目标短语的精确匹配和部分匹配率约为80%,误报很少,漏报率适中。研究结果为电子病历中一般概念识别的自动化提供了一种策略。

相似文献

引用本文的文献

4
An annotation and modeling schema for prescription regimens.处方用药方案的注释与建模架构
J Biomed Semantics. 2019 May 31;10(1):10. doi: 10.1186/s13326-019-0201-9.
9
PASTE: patient-centered SMS text tagging in a medication management system.患者为中心的短信文本标记在药物管理系统中。
J Am Med Inform Assoc. 2012 May-Jun;19(3):368-74. doi: 10.1136/amiajnl-2011-000484. Epub 2011 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验