Dagneaux C, Gousset H, Shchyolkina A K, Ouali M, Letellier R, Liquier J, Florentiev V L, Taillandier E
Laboratoire CSSB - URA CNRS 1430, UFR de Santé-Médecine-Biologie-Humaine, Université Paris XIII, Bobigny, France.
Nucleic Acids Res. 1996 Nov 15;24(22):4506-12. doi: 10.1093/nar/24.22.4506.
Intramolecular triple helices have been obtained by folding back twice oligonucleotides formed by decamers bound by non-nucleotide linkers: dA10-linker-dA10-linker-dT10 and dA10-linker-dT10-linker-dA10. We have thus prepared two triple helices with forced third strand orientation, respectively antiparallel (apAA-T) and parallel (pAA-T) with respect to the adenosine strand of the Watson-Crick duplex. The existence of the triple helices has been shown by FTIR, UV and fluorescence spectroscopies. Similar melting temperatures have been obtained in very different oligomer concentration conditions (micromolar solutions for thermal denaturation classically followed by UV spectroscopy, milimolar solutions in the case of melting monitored by FTIR spectroscopy) showing that the triple helices are intramolecular. The stability of the parallel triplex is found to be slightly lower than that of the antiparallel (deltaT(m) = 6 degrees C). The sugar conformations determined by FTIR are different for both triplexes. Only South-type sugars are found in the antiparallel triplex whereas both South- and North-type sugars are detected in the parallel triplex. In this case, thymidine sugars have a South-type geometry, and the adenosine strand of the Watson-Crick duplex has North-type sugars. For the antiparallel triplex the experimental results and molecular modeling data are consistent with a reverse-Hoogsteen like third-strand base pairing and South-type sugar conformation. An energetically optimized model of the parallel A*A-T triple helix with a non-uniform distribution of sugar conformations is discussed.
通过将由非核苷酸连接子连接的十聚体形成的寡核苷酸折叠两次,已获得分子内三链螺旋:dA10-连接子-dA10-连接子-dT10和dA10-连接子-dT10-连接子-dA10。因此,我们制备了两个具有强制第三链取向的三链螺旋,分别相对于沃森-克里克双链体的腺苷链反平行(apAA-T)和平行(pAA-T)。通过傅里叶变换红外光谱(FTIR)、紫外光谱和荧光光谱证实了三链螺旋的存在。在非常不同的寡聚物浓度条件下获得了相似的解链温度(经典的紫外光谱监测热变性的微摩尔溶液,FTIR光谱监测解链的毫摩尔溶液),表明三链螺旋是分子内的。发现平行三链体的稳定性略低于反平行三链体(ΔT(m)=6℃)。FTIR测定的两种三链体的糖构象不同。在反平行三链体中仅发现南型糖,而在平行三链体中同时检测到南型和北型糖。在这种情况下,胸苷糖具有南型几何结构,沃森-克里克双链体的腺苷链具有北型糖。对于反平行三链体,实验结果和分子模拟数据与类似反向-霍格施泰因的第三链碱基配对和南型糖构象一致。讨论了具有糖构象非均匀分布的平行A*A-T三链螺旋的能量优化模型。