Suppr超能文献

The calretinin-containing mossy cells survive excitotoxic insult in the gerbil dentate gyrus. Comparison of excitotoxicity-induced neuropathological changes in the gerbil and rat.

作者信息

Kotti T, Tapiola T, Riekkinen P J, Miettinen R

机构信息

Department of Neurology, University of Kuopio, Finland.

出版信息

Eur J Neurosci. 1996 Nov;8(11):2371-8. doi: 10.1111/j.1460-9568.1996.tb01200.x.

Abstract

Our preliminary results showed that mossy fibres do not undergo sprouting after global ischaemia in gerbils, although the pattern of hippocampal cell damage resembled that seen in ischaemic and epileptic rats, where mossy fibre sprouting is known to occur. In order to investigate whether the observed differences in the appearance of mossy fibre sprouting are related to the animal model or species used, this study was undertaken to compare the neuropathological changes induced in gerbils by systemic injection of kainate or by occlusion of carotid arteries with the changes induced in rats by injection of kainate. The pattern of pyramidal cell damage was very similar in each group. Mossy fibre sprouting was present in epileptic rats but not in ischaemic or epileptic gerbils. The number of somatostatin-immunoreactive neurons was decreased in the hilus of epileptic rats and ischaemic gerbils, but not in epileptic gerbils. The analysis of calretinin immunoreactivity in the dentate gyrus revealed differences between the rat and gerbil. The most striking difference between these species was that mossy cells contained calretinin in gerbils but not in rats. Cell counting showed that the calretinin-containing mossy cells had survived both in epileptic and ischaemic gerbils. Therefore, since the mossy cells are known to be highly susceptible to excitotoxic insult in rats and degeneration of these cells is thought to be a key element in the induction of mossy fibre sprouting, we propose that the absence of mossy fibre sprouting in gerbils is related to the survival of the mossy cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验