Berenfeld O, Abboud S
Medical Physics Group, School of Physics and Astronomy, Tel Aviv University, Israel.
Med Eng Phys. 1996 Dec;18(8):615-25. doi: 10.1016/s1350-4533(96)00028-8.
A computerized model of the heart for the simulation of the electrical cardiac activity is described. The cardiac cells are arranged in a three-dimensional cubic lattice and their action potential is governed by modified FitzHugh-Nagumo reaction-diffusion state equations system which exhibits properties such as oscillations, variable excitability and refractoriness. The modifications of the FitzHugh-Nagumo equations system account for asymmetric action potential regarding the fast depolarization and slow repolarization rate and for rotational anisotropic propagation. An isolated cell is tested for reproduction of the strength-duration curves and restitution. The structure basic unit cell is assigned with an individual set of control parameters that creates inhomogeneity and anisotropy to simulate the various cardiac components such as pacers, muscle cells and conduction fibers. The spatial resolution of the structure is 1 mm. The collective activity of the cells generates a realistic ECG waveform that scales the simulated temporal step unit to 0.2 msec. The effective diffusion coefficient ranges between 0.055 mm2/msec to 1 mm2/msec. The propagation velocity of the myocardial activation is calculated at normal direction to the wavefront surface and values obtained are 1.17 mm/msec at the muscle cells and 2.5 mm/msec at the main conduction fibers. An ischemia is induced to verify the capability of the model to account for abnormalities. The developed model can give an insight into the local and global complex dynamics of the heart's electrical activity in the transition from normal to abnormal myocardial activity and may help to estimate the effects of myocardial properties on the ECG rhythm.
本文描述了一种用于模拟心脏电活动的心脏计算机模型。心脏细胞排列成三维立方晶格,其动作电位由修正的FitzHugh-Nagumo反应扩散状态方程组控制,该方程组具有振荡、可变兴奋性和不应期等特性。FitzHugh-Nagumo方程组的修正考虑了动作电位在快速去极化和缓慢复极化速率方面的不对称性以及旋转各向异性传播。对单个细胞进行测试以再现强度-持续时间曲线和恢复情况。结构基本单元被赋予一组单独的控制参数,这些参数产生不均匀性和各向异性,以模拟诸如起搏器、肌肉细胞和传导纤维等各种心脏成分。结构的空间分辨率为1毫米。细胞的集体活动产生逼真的心电图波形,将模拟的时间步长单位缩放到0.2毫秒。有效扩散系数范围在0.055平方毫米/毫秒至1平方毫米/毫秒之间。心肌激活的传播速度是在与波前表面垂直的方向上计算的,在肌肉细胞处获得的值为1.17毫米/毫秒,在主要传导纤维处为2.5毫米/毫秒。诱导缺血以验证模型解释异常情况的能力。所开发的模型可以深入了解从正常心肌活动到异常心肌活动转变过程中心脏电活动的局部和全局复杂动态,并可能有助于估计心肌特性对心电图节律的影响。