Parker J E, Holub E B, Frost L N, Falk A, Gunn N D, Daniels M J
Sainsbury Laboratory, Norwich Research Park, United Kingdom.
Plant Cell. 1996 Nov;8(11):2033-46. doi: 10.1105/tpc.8.11.2033.
The interaction between Arabidopsis and the biotrophic oomycete Peronospora parasitica (downy mildew) provides an attractive model pathosystem to identify molecular components of the host that are required for genotype-specific recognition of the parasite. These components are the so-called RPP genes (for resistance to P. parasitica). Mutational analysis of the ecotype Wassilewskija (Ws-0) revealed an RPP-nonspecific locus called EDS1 (for enhanced disease susceptibility) that is required for the function of RPP genes on chromosomes 3 (RPP1/RPP14 and RPP10) and 4 (RPP12). Genetic analyses demonstrated that the eds1 mutation is recessive and is not a defective allele of any known RPP gene, mapping to the bottom arm of chromosome 3 (approximately 13 centimorgans below RPP1/RPP14). Phenotypically, the Ws-eds1 mutant seedlings supported heavy sporulation by P. parasitica isolates that are each diagnostic for one of the RPP genes in wild-type Ws-0; none of the isolates is capable of sporulating on wild-type Ws-0. Ws-eds1 seedlings exhibited enhanced susceptibility to some P. parasitica isolates when compared with a compatible wild-type ecotype, Columbia, and the eds1 parental ecotype, Ws-0. This was observed as earlier initiation of sporulation and elevated production of conidiosporangia. Surprisingly, cotyledons of Ws-eds1 also supported low sporulation by five isolates of P. parasitica from Brassica oleracea. These isolates were unable to sporulate on > 100 ecotypes of Arabidopsis, including wild-type Ws-0. An isolate of Albugo candida (white blister) from B. oleracea also sporulated on Ws-eds1, but the mutant exhibited no alteration in phenotype when inoculated with several oomycete isolates from other host species. The bacterial resistance gene RPM1, conferring specific recognition of the avirulence gene avrB from Pseudomonas syringae pv glycinea, was not compromised in Ws-eds1 plants. The mutant also retained full responsiveness to the chemical inducer of systemic acquired resistance, 2,6-dichloroisonicotinic acid; Ws-eds1 seedlings treated with 2,6-dichloroisonicotinic acid became resistant to the Ws-0-compatible and Ws-0-incompatible P. parasitica isolates Emwa1 and Noco2, respectively. In summary, the EDS1 gene appears to be a necessary component of the resistance response specified by several RPP genes and is likely to function upstream from the convergence of disease resistance pathways in Arabidopsis.
拟南芥与活体营养型卵菌寄生霜霉(霜霉病)之间的相互作用提供了一个具有吸引力的模式病理系统,用于鉴定宿主中对寄生虫进行基因型特异性识别所需的分子成分。这些成分就是所谓的RPP基因(抗寄生霜霉病基因)。对生态型瓦西列夫斯基(Ws-0)的突变分析揭示了一个名为EDS1(疾病易感性增强)的RPP非特异性位点,它是3号染色体(RPP1/RPP14和RPP10)和4号染色体(RPP12)上RPP基因功能所必需的。遗传分析表明,eds1突变是隐性的,且不是任何已知RPP基因的缺陷等位基因,定位于3号染色体的短臂(在RPP1/RPP14下方约13厘摩处)。从表型上看,Ws-eds1突变体幼苗能支持寄生霜霉分离株大量产孢,这些分离株分别对野生型Ws-0中的一个RPP基因具有诊断性;没有一个分离株能够在野生型Ws-0上产孢。与亲和性野生型生态型哥伦比亚以及eds1亲本生态型Ws-0相比,Ws-eds1幼苗对一些寄生霜霉分离株表现出增强的易感性。这表现为产孢起始更早且分生孢子囊产量增加。令人惊讶的是,Ws-eds1的子叶也能支持来自甘蓝的5个寄生霜霉分离株少量产孢。这些分离株无法在100多种拟南芥生态型上产孢,包括野生型Ws-0。来自甘蓝的白锈菌(白疱病)分离株也能在Ws-eds1上产孢,但该突变体在接种来自其他宿主物种的几种卵菌分离株时,表型没有改变。赋予对丁香假单胞菌大豆致病变种无毒基因avrB特异性识别的细菌抗性基因RPM1,在Ws-eds1植株中没有受损。该突变体对系统性获得性抗性的化学诱导剂2,6 - 二氯异烟酸也保持完全响应;用2,6 - 二氯异烟酸处理的Ws-eds1幼苗分别对与Ws-0亲和及不亲和的寄生霜霉分离株Emwa1和Noco2产生抗性。总之,EDS1基因似乎是几个RPP基因所指定的抗性反应的必要成分,并且可能在拟南芥抗病途径汇聚的上游发挥作用。