Borst D W, Blumenthal R M, Matthews R G
Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109-1055, USA.
J Bacteriol. 1996 Dec;178(23):6904-12. doi: 10.1128/jb.178.23.6904-6912.1996.
Most studies of global regulatory proteins are performed in vitro or involve phenotypic comparisons between wild-type and mutant strains. We report the use of strains in which the gene for the leucine-responsive regulatory protein (lrp) is transcribed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters for the purpose of continuously varying the in vivo concentration of Lrp. To obtain a broad range of Lrp concentrations, strains were employed that contained the lrp fusion either in the chromosome (I. C. Blomfield, P. J. Calie, K. J. Eberhardt, M. S. McClain, and B. I. Eisenstein, J. Bacteriol. 175:27-36, 1993) or on a multicopy plasmid. Western blot (immunoblot) analysis with polyclonal antiserum to Lrp confirmed that Lrp levels could be varied more than 70-fold by growing the strains in glucose minimal 3-(N-morpholino)propanesulfonic acid (MOPS) medium containing different amounts of IPTG. Expression of an Lrp-regulated gltB::lacZ operon fusion was measured over this range of Lrp concentrations. beta-Galactosidase activity rose with increasing Lrp levels up to the level of Lrp found in wild-type strains, at which point expression is maximal. The presence of leucine in the medium increased the level of Lrp necessary to achieve half-maximal expression of the gltB::lacZ fusion, as predicted by earlier in vitro studies (B. R. Ernsting, J. W. Denninger, R. M. Blumenthal, and R. G. Matthews, J. Bacteriol. 175:7160-7169, 1993). Interestingly, levels of Lrp greater than those in wild-type cells interfered with activation of gltB::lacZ expression. The growth rate of cultures correlated with the intracellular Lrp concentration: levels of Lrp either lower or higher than wild-type levels resulted in significantly slower growth rates. Thus, the level of Lrp in the cell appears to be optimal for rapid growth in minimal medium, and the gltBDF control region is designed to give maximal expression at this Lrp level.
大多数关于全局调节蛋白的研究是在体外进行的,或者涉及野生型和突变菌株之间的表型比较。我们报告了使用这样的菌株,其中亮氨酸响应调节蛋白(Lrp)的基因由异丙基-β-D-硫代半乳糖苷(IPTG)诱导型启动子转录,目的是连续改变Lrp在体内的浓度。为了获得广泛的Lrp浓度范围,使用了在染色体上(I.C.布洛姆菲尔德、P.J.卡利、K.J.埃伯哈特、M.S.麦克莱恩和B.I.艾森斯坦,《细菌学杂志》175:27 - 36,1993年)或多拷贝质粒上含有lrp融合基因的菌株。用针对Lrp的多克隆抗血清进行的蛋白质免疫印迹(免疫印迹)分析证实,通过在含有不同量IPTG的葡萄糖基本3 -(N - 吗啉代)丙烷磺酸(MOPS)培养基中培养菌株,Lrp水平可以变化70倍以上。在这个Lrp浓度范围内测量了Lrp调节的gltB::lacZ操纵子融合的表达。β - 半乳糖苷酶活性随着Lrp水平的增加而升高,直至达到野生型菌株中发现的Lrp水平,此时表达量最大。正如早期体外研究(B.R.恩斯汀、J.W.丹宁格、R.M.布卢门撒尔和R.G.马修斯,《细菌学杂志》175:7160 - 7169,1993年)所预测的,培养基中亮氨酸的存在增加了实现gltB::lacZ融合表达量半最大值所需的Lrp水平。有趣的是,高于野生型细胞的Lrp水平会干扰gltB::lacZ表达的激活。培养物的生长速率与细胞内Lrp浓度相关:低于或高于野生型水平的Lrp水平都会导致生长速率显著减慢。因此,细胞中Lrp的水平似乎对于在基本培养基中快速生长是最佳的,并且gltBDF控制区域被设计为在这个Lrp水平下给出最大表达。