Joshi H M, Tabita F R
Department of Microbiology, Ohio State University, Columbus 43210-1292, USA.
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14515-20. doi: 10.1073/pnas.93.25.14515.
Photosynthesis, biological nitrogen fixation, and carbon dioxide assimilation are three fundamental biological processes catalyzed by photosynthetic bacteria. In the present study, it is shown that mutant strains of the nonsulfur purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter sphaeroides, containing a blockage in the primary CO2 assimilatory pathway, derepress the synthesis of components of the nitrogen fixation enzyme complex and abrogate normal control mechanisms. The absence of the Calvin-Benson-Bassham (CBB) reductive pentose phosphate CO2 fixation pathway removes an important route for the dissipation of excess reducing power. Thus the mutant strains develop alternative means to remove these reducing equivalents, resulting in the synthesis of large amounts of nitrogenase even in the presence of ammonia. This response is under the control of a global two-component signal transduction system previously found to regulate photosystem biosynthesis and the transcription of genes required for CO2 fixation through the CBB pathway and alternative routes. In addition, this two-component system directly controls the ability of these bacteria to grow under nitrogen-fixing conditions. These results indicate that there is a molecular link between the CBB and nitrogen fixation process, allowing the cell to overcome powerful control mechanisms to remove excess reducing power generated by photosynthesis and carbon metabolism. Furthermore, these results suggest that the two-component system integrates the expression of genes required for the three processes of photosynthesis, nitrogen fixation, and carbon dioxide fixation.
光合作用、生物固氮和二氧化碳同化是光合细菌催化的三个基本生物学过程。在本研究中,结果表明,非硫紫色光合细菌红螺菌(Rhodospirillum rubrum)和球形红杆菌(Rhodobacter sphaeroides)的突变菌株,其主要二氧化碳同化途径存在阻断,会解除固氮酶复合物组分合成的抑制,并废除正常的调控机制。卡尔文 - 本森 - 巴斯姆(CBB)还原戊糖磷酸途径的缺失消除了一条耗散过量还原力的重要途径。因此,突变菌株发展出替代方式来去除这些还原当量,即使在有氨存在的情况下也会导致大量固氮酶的合成。这种反应受一个全局性双组分信号转导系统的控制,该系统先前被发现可调节光系统生物合成以及通过CBB途径和替代途径进行二氧化碳固定所需基因的转录。此外,这个双组分系统直接控制这些细菌在固氮条件下生长的能力。这些结果表明,CBB途径与固氮过程之间存在分子联系,使细胞能够克服强大的调控机制,以去除光合作用和碳代谢产生的过量还原力。此外,这些结果表明,双组分系统整合了光合作用、固氮和二氧化碳固定这三个过程所需基因的表达。