Liu Xuewen, Qi Panqing, Fan Weipeng, Liu Wuyang, Li Xingjiang, Nie Yong, Wu Xiao-Lei
College of Engineering, Peking University, Beijing, 100871, China.
College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
Adv Sci (Weinh). 2025 Jul;12(25):e2501376. doi: 10.1002/advs.202501376. Epub 2025 May 14.
Biological nitrogen fixation (BNF) is a pivotal process that reduces nitrogen to ammonium within the nitrogen cycle. Extracellular electron transfer (EET) between diazotrophs and the extracellular environment influences the occurrence and efficiency of BNF. Although extracellular electron acceptors can function as a component of the electron transport chain, providing energy for chemotrophic nitrogen fixation via extracellular respiration, the function and mechanism of outward EET in photosynthetic diazotrophs remain unclear. Here, using Rhodopseudomonas palustris TIE-1, a photosynthetic bioelectrochemical nitrogen fixation system is established for simultaneous nitrogen fixation and current generation, to dissect the complex interaction between these two processes. Outward EET functions are found to maintain redox balance, rather than serving as an extracellular respiration pathway. It significantly suppresses BNF by competing with nitrogenase for electrons. Lumichrome serves as the primary electron shuttle for indirect electron transfer, while cytochromes play an important role in direct electron transfer. Notably, the pio operon participates in outward EET. This study reveals the interaction mechanism between photosynthetic BNF and outward EET, providing new insight into the regulatory mechanisms of nitrogen fixation in anoxygenic phototrophs across diverse environmental conditions.
生物固氮(BNF)是氮循环中把氮还原为铵的关键过程。固氮菌与细胞外环境之间的细胞外电子转移(EET)影响生物固氮的发生和效率。尽管细胞外电子受体可作为电子传递链的一个组成部分,通过细胞外呼吸为化能营养型固氮提供能量,但光合固氮菌向外电子转移的功能和机制仍不清楚。在此,利用沼泽红假单胞菌TIE-1建立了一个用于同时固氮和产电的光合生物电化学固氮系统,以剖析这两个过程之间的复杂相互作用。研究发现向外电子转移的功能是维持氧化还原平衡,而不是作为细胞外呼吸途径。它通过与固氮酶竞争电子来显著抑制生物固氮。核黄素作为间接电子转移的主要电子穿梭体,而细胞色素在直接电子转移中起重要作用。值得注意的是,pio操纵子参与向外电子转移。本研究揭示了光合生物固氮与向外电子转移之间的相互作用机制,为不同环境条件下厌氧光合生物固氮的调控机制提供了新的见解。