Suppr超能文献

寄生蝇奥氏金蝇通过机械耦合实现定向听觉。

Directional hearing by mechanical coupling in the parasitoid fly Ormia ochracea.

作者信息

Robert D, Miles R N, Hoy R R

机构信息

Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-2702, USA.

出版信息

J Comp Physiol A. 1996;179(1):29-44. doi: 10.1007/BF00193432.

Abstract

Sound localization is a basic processing task of the auditory system. The directional detection of an incident sound impinging on the ears relies on two acoustic cues: interaural amplitude and interaural time differences. In small animals, with short interaural distances both amplitude and time cues can become very small, challenging the directional sensitivity of the auditory system. The ears of a parasitoid fly Ormia ochracea, are unusual in that both acoustic sensors are separated by only 520 microns and are contained within an undivided air-filled chamber. This anatomy results in minuscule differences in interaural time cues (ca. 2 microseconds) and no measurable difference in interaural intensity cues generated from an incident sound wave. The tympana of both ears are anatomically coupled by a cuticular bridge. This bridge also mechanically couples the tympanana, providing a basis for directional sensitivity. Using laser vibrometry, it is shown that the mechanical response of the tympanal membranes has a pronounced directional sensitivity. Interaural time and intensity differences in the mechanical response of the ears are significantly larger than those available in the acoustic field. The tympanal membranes vibrate with amplitude differences of about 12 dB and time differences on the order of 50 microseconds to sounds at 90 degrees off the longitudinal body axis. The analysis of the deflection shapes of the tympanal vibrations shows that the interaural differences in the mechanical response are due to the dynamic properties of the tympanal system and reflect its intrinsic sensitivity to the direction of a sound source. Using probe microphones and extracellular recording techniques, we show that the primary auditory afferents encode sound direction with a time delay of about 300 microseconds. Our data point to a novel mechanism for directional hearing in O. ochracea based on intertympanal mechanical coupling, a process that amplifies small acoustic cues into interaural time and amplitude differences that can be reliably processed at the neural level. An intuitive description of the mechanism is proposed using a simple mechanical model in which the ears are coupled through a flexible lever.

摘要

声音定位是听觉系统的一项基本处理任务。入射到耳朵上的声音的方向检测依赖于两种声学线索:双耳振幅差和双耳时间差。在小型动物中,由于双耳间距较短,振幅和时间线索都可能变得非常小,这对听觉系统的方向敏感性提出了挑战。寄生蝇黄腹嗡蜣螂的耳朵很特别,因为两个声学传感器仅相隔520微米,并且位于一个未分隔的充满空气的腔室内。这种解剖结构导致双耳时间线索的差异极小(约2微秒),并且入射声波产生的双耳强度线索没有可测量的差异。两只耳朵的鼓膜在解剖学上通过一个角质桥相连。这个桥也在机械上连接了鼓膜,为方向敏感性提供了基础。使用激光测振技术表明,鼓膜的机械响应具有明显的方向敏感性。耳朵机械响应中的双耳时间和强度差异明显大于声场中的差异。鼓膜以约12分贝的振幅差异和50微秒量级的时间差异振动,以响应与身体纵轴成90度角的声音。对鼓膜振动偏转形状的分析表明,机械响应中的双耳差异是由于鼓膜系统的动态特性,并且反映了其对声源方向的固有敏感性。使用探针麦克风和细胞外记录技术,我们表明初级听觉传入神经以约300微秒的时间延迟编码声音方向。我们的数据指向一种基于鼓膜间机械耦合的黄腹嗡蜣螂定向听觉的新机制,这一过程将微小的声学线索放大为双耳时间和振幅差异,这些差异可以在神经水平上可靠地进行处理。使用一个简单的机械模型提出了对该机制的直观描述,在该模型中耳朵通过一个柔性杠杆相连。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验