Suppr超能文献

预测择期手术时间的统计模型。与计算机排班系统及外科医生提供的预估进行比较。

Statistical modeling to predict elective surgery time. Comparison with a computer scheduling system and surgeon-provided estimates.

作者信息

Wright I H, Kooperberg C, Bonar B A, Bashein G

机构信息

Department of Anesthesiology, University of Washington, Seattle 98195-6540, USA.

出版信息

Anesthesiology. 1996 Dec;85(6):1235-45. doi: 10.1097/00000542-199612000-00003.

Abstract

BACKGROUND

Accurate estimation of operating times is a prerequisite for the efficient scheduling of the operating suite. The authors, in this study, sought to compare surgeons' time estimates for elective cases with those of commercial scheduling software, and to ascertain whether improvements could be made by regression modeling.

METHODS

The study was conducted at the University of Washington Medical Center in three phases. Phase 1 retrospectively reviewed surgeons' time estimates and the scheduling system's estimates throughout 1 yr. In phase 2, data were collected prospectively from participating surgeons by means of a data entry form completed at the time of scheduling elective cases. Data included the procedure code, estimated operating time, estimated case difficulty, and potential factors that might affect the duration. In phase 3, identical data were collected from five selected surgeons by personal interview.

RESULTS

In phase 1, 26 of 43 surgeons provided significantly better estimates than did the scheduling system (P < 0.01), and no surgeon was significantly worse, although the absolute errors were large (34% of 157 min average case length). In phase 2, modeling improved the accuracy of the surgeons' estimates by 11.5%, compared with the scheduling system. In phase 3, applying the model from phase 2 improved the accuracy of the surgeons' estimates by 18.2%.

CONCLUSIONS

Surgeons provide more accurate time estimates than does the scheduling software as it is used in our institution. Regression modeling effects modest improvements in accuracy. Further improvements would be likely if the hospital information system could provide timely historical data and feedback to the surgeons.

摘要

背景

准确估算手术时间是手术室高效排班的前提条件。在本研究中,作者试图比较外科医生对择期手术病例的时间估算与商业排班软件的估算,并确定是否可以通过回归建模来改进估算。

方法

该研究在华盛顿大学医学中心分三个阶段进行。第一阶段回顾性分析了1年中外科医生的时间估算和排班系统的估算。在第二阶段,通过在安排择期手术病例时填写的数据输入表,前瞻性收集参与研究的外科医生的数据。数据包括手术代码、估计手术时间、估计病例难度以及可能影响手术时长的潜在因素。在第三阶段,通过个人访谈从五位选定的外科医生处收集相同的数据。

结果

在第一阶段,43名外科医生中有26名提供的估算明显优于排班系统(P < 0.01),尽管绝对误差较大(平均病例时长157分钟的34%),但没有外科医生的估算明显更差。在第二阶段,与排班系统相比,建模将外科医生估算的准确性提高了11.5%。在第三阶段,应用第二阶段的模型将外科医生估算的准确性提高了18.2%。

结论

在我们机构使用的情况下,外科医生提供的时间估算比排班软件更准确。回归建模在准确性方面有适度提高。如果医院信息系统能够向外科医生提供及时的历史数据和反馈,可能会有进一步的改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验