Suppr超能文献

重症监护监测中的时间序列分析。

Time series analysis in critical care monitoring.

作者信息

Imhoff M, Bauer M

机构信息

Surgical Department, Community Hospital, Dortmund, Germany.

出版信息

New Horiz. 1996 Nov;4(4):519-31.

PMID:8968984
Abstract

Time series analysis techniques facilitate statistical analysis of variables in the course of time. Continuous monitoring of the critically ill offers an especially wide range of applications. Several studies from different work groups show that autoregression, integration, moving average (ARIMA) models help to identify pathologic outliers and trends in physiologic variables in surgical critical care. The effect of therapeutic interventions on physiologic target variables has been estimated with interrupted ARIMA models. The time series before the therapeutic intervention were compared to changes under intervention using the same model including an intervention regressor. In most patients clinically relevant therapeutic effects could be statistically identified. Similarly, noneffective therapeutic maneuvers could be detected early, and eventually changes in therapeutic strategy initiated. These techniques appear to be most appropriate with electronic online measurements at short time intervals, e.g., heart rate, invasive pressures, regional oxygenation. But even on the basis of short time series of critical care monitoring variables, ARIMA models can successfully be employed for the analysis of laboratory variables and of therapeutic interventions. Nevertheless, due to high demands for manpower and to statistical methodological limitations, the general use of this methodology in clinical practice apart from controlled clinical studies cannot be recommended today. Nevertheless, time series analysis techniques bear a great potential for clinical applications. Ongoing studies will in the future allow us to apply time series analyses to a wide group of clinical problems. In clinical practice, time series analyses support a more analytical and reproducible approach toward the evaluation of pathologic changes and therapeutic effects in the individual patient. Present research focuses on the development of automatic methods for time series analysis that allow instantaneous statistical analysis at the bedside and algorithms for multivariate time series analysis. This would offer an option to the healthcare professional for a more reliable evaluation of the individual treatment. Therefore, it appears rewarding to invest further efforts into the development of medical time series analysis techniques.

摘要

时间序列分析技术有助于对随时间变化的变量进行统计分析。对危重症患者的持续监测有着特别广泛的应用。来自不同工作组的多项研究表明,自回归、积分、移动平均(ARIMA)模型有助于识别外科重症监护中生理变量的病理异常值和趋势。治疗干预对生理目标变量的影响已通过间断ARIMA模型进行评估。使用包含干预回归变量的相同模型,将治疗干预前的时间序列与干预期间的变化进行比较。在大多数患者中,可以从统计学上识别出具有临床意义的治疗效果。同样,可以早期检测到无效的治疗操作,并最终启动治疗策略的调整。这些技术似乎最适用于短时间间隔的电子在线测量,例如心率、有创压力、局部氧合。但即使基于重症监护监测变量的短时间序列,ARIMA模型也可成功用于分析实验室变量和治疗干预。然而,由于对人力要求较高且存在统计方法学限制,目前除了对照临床研究外,不建议在临床实践中普遍使用这种方法。尽管如此,时间序列分析技术在临床应用方面具有巨大潜力。正在进行的研究将使我们未来能够将时间序列分析应用于广泛的临床问题。在临床实践中,时间序列分析支持对个体患者的病理变化和治疗效果进行更具分析性和可重复性的评估方法。目前的研究重点是开发用于时间序列分析的自动方法,以便在床边进行即时统计分析,以及开发多变量时间序列分析算法。这将为医疗保健专业人员提供一个更可靠地评估个体治疗的选项。因此,进一步投入精力开发医学时间序列分析技术似乎是值得的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验