Suppr超能文献

突触电流和电压门控电流在浦肯野细胞放电控制中的作用:一项建模研究。

The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study.

作者信息

Jaeger D, De Schutter E, Bower J M

机构信息

Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Neurosci. 1997 Jan 1;17(1):91-106. doi: 10.1523/JNEUROSCI.17-01-00091.1997.

Abstract

We have used a realistic computer model to examine interactions between synaptic and intrinsic voltage-gated currents during somatic spiking in cerebellar Purkinje cells. We have shown previously that this model generates realistic in vivo patterns of somatic spiking in the presence of continuous background excitatory and inhibitory input (). In the present study, we analyzed the flow of synaptic and intrinsic currents across the dendritic membrane and the interaction between the soma and dendrite underlying this spiking behavior. This analysis revealed that: (1) dendritic inward current flow was dominated by a noninactivating P-type calcium current, resulting in a continuous level of depolarization; (2) the mean level of this depolarization was controlled by the mean rate of excitatory and inhibitory synaptic input; (3) the synaptic control involved a voltage-clamping mechanism exerted by changes of synaptic driving force at different membrane potentials; (4) the resulting total current through excitatory and inhibitory synapses was near-zero, with a small outward bias opposing the P-type calcium current; (5) overall, the dendrite acted as a variable current sink with respect to the soma, slowing down intrinsic inward currents in the soma; (6) the somato-dendritic current showed important phasic changes during each spike cycle; and (7) the precise timing of somatic spikes was the result of complex interactions between somatic and dendritic currents that did not directly reflect the timing of synaptic input. These modeling results suggest that Purkinje cells act quite differently from simple summation devices, as has been assumed previously in most models of cerebellar function. Specific physiologically testable predictions are discussed.

摘要

我们使用了一个逼真的计算机模型来研究小脑浦肯野细胞体细胞放电期间突触电流与内在电压门控电流之间的相互作用。我们之前已经表明,在存在持续背景兴奋性和抑制性输入的情况下,该模型会产生逼真的体内体细胞放电模式。在本研究中,我们分析了突触电流和内在电流在树突膜上的流动,以及这种放电行为背后的体细胞与树突之间的相互作用。该分析揭示了:(1)树突内向电流主要由非失活的P型钙电流主导,导致持续的去极化水平;(2)这种去极化的平均水平由兴奋性和抑制性突触输入的平均速率控制;(3)突触控制涉及由不同膜电位下突触驱动力变化施加的电压钳制机制;(4)通过兴奋性和抑制性突触的总电流接近零,有一个小的外向偏置与P型钙电流相反;(5)总体而言,相对于体细胞,树突充当可变电流汇,减缓了体细胞中的内在内向电流;(6)体-树突电流在每个放电周期中表现出重要的相位变化;(7)体细胞放电的精确时间是体细胞电流和树突电流之间复杂相互作用的结果,并不直接反映突触输入的时间。这些建模结果表明,浦肯野细胞的行为与简单求和装置有很大不同,这与大多数先前的小脑功能模型所假设的情况不同。文中还讨论了具体的可通过生理学测试验证的预测。

相似文献

1
The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study.
J Neurosci. 1997 Jan 1;17(1):91-106. doi: 10.1523/JNEUROSCI.17-01-00091.1997.
2
Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances.
J Neurosci. 1999 Jul 15;19(14):6090-101. doi: 10.1523/JNEUROSCI.19-14-06090.1999.
3
An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
J Neurophysiol. 1994 Jan;71(1):401-19. doi: 10.1152/jn.1994.71.1.401.
4
An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice.
J Neurophysiol. 1994 Jan;71(1):375-400. doi: 10.1152/jn.1994.71.1.375.
5
Using realistic models to study synaptic integration in cerebellar Purkinje cells.
Rev Neurosci. 1999;10(3-4):233-45. doi: 10.1515/revneuro.1999.10.3-4.233.
7
Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices.
J Physiol. 1980 Aug;305:197-213. doi: 10.1113/jphysiol.1980.sp013358.
9
Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
Neuroscience. 2004;124(2):305-17. doi: 10.1016/j.neuroscience.2003.11.015.
10

引用本文的文献

2
A Conductance-Based Silicon Synapse Circuit.
Biomimetics (Basel). 2022 Dec 16;7(4):246. doi: 10.3390/biomimetics7040246.
4
Origins of eukaryotic excitability.
Philos Trans R Soc Lond B Biol Sci. 2021 Mar 15;376(1820):20190758. doi: 10.1098/rstb.2019.0758. Epub 2021 Jan 25.
6
Microcircuit Rules Governing Impact of Single Interneurons on Purkinje Cell Output In Vivo.
Cell Rep. 2020 Mar 3;30(9):3020-3035.e3. doi: 10.1016/j.celrep.2020.02.009.
7
A general method to generate artificial spike train populations matching recorded neurons.
J Comput Neurosci. 2020 Feb;48(1):47-63. doi: 10.1007/s10827-020-00741-w. Epub 2020 Jan 23.
8
Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit.
Front Mol Neurosci. 2019 Nov 7;12:267. doi: 10.3389/fnmol.2019.00267. eCollection 2019.
9
10
Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue.
Front Cell Neurosci. 2016 Jul 8;10:176. doi: 10.3389/fncel.2016.00176. eCollection 2016.

本文引用的文献

1
RANDOM WALK MODELS FOR THE SPIKE ACTIVITY OF A SINGLE NEURON.
Biophys J. 1964 Jan;4(1 Pt 1):41-68. doi: 10.1016/s0006-3495(64)86768-0.
3
Experimental evaluation of input-output models of motoneuron discharge.
J Neurophysiol. 1996 Jan;75(1):367-79. doi: 10.1152/jn.1996.75.1.367.
5
Integrator or coincidence detector? The role of the cortical neuron revisited.
Trends Neurosci. 1996 Apr;19(4):130-7. doi: 10.1016/s0166-2236(96)80019-1.
6
7
Dynamic clamp: computer-generated conductances in real neurons.
J Neurophysiol. 1993 Mar;69(3):992-5. doi: 10.1152/jn.1993.69.3.992.
8
The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs.
J Neurosci. 1993 Jan;13(1):334-50. doi: 10.1523/JNEUROSCI.13-01-00334.1993.
10
Identification of cell types from action potential waveforms: cerebellar granule cells.
Brain Res. 1993 Aug 13;619(1-2):313-8. doi: 10.1016/0006-8993(93)91626-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验