Suppr超能文献

通过居里点热解/质谱联用,随后进行多变量分析和人工神经网络,对青霉属中的物种进行分类。

Classification of species in the genus Penicillium by Curie point pyrolysis/mass spectrometry followed by multivariate analysis and artificial neural networks.

作者信息

Nilsson T, Bassani M R, Larsen T O, Montanarella L

机构信息

Environment Institute, European Commission Joint Research Centre, Ispra (Va), Italy.

出版信息

J Mass Spectrom. 1996 Dec;31(12):1422-8. doi: 10.1002/(SICI)1096-9888(199612)31:12<1422::AID-JMS442>3.0.CO;2-5.

Abstract

Curie point pyrolysis/mass spectrometry of Penicillium species was performed with 530 degrees C Curie point foils. The mass spectra were submitted to principal component analysis, canonical variates analysis and hierarchical cluster analysis, producing a final dendrogram by the use of average linkage clustering. By this approach a successful classification of the species Penicillium italicum, P. expansum and P. digitatum originating from fruits was obtained. Isolates of the same species grouped together in the dendrogram, while the different species were distinguished. Also when grown on two different agar media, replicates of the same species grouped together. Likewise, a satisfactory classification was achieved by multivariate analysis of the data for various isolates of the cheese-associated fungi Aspergillus versicolor, P. discolor, P. roqueforti, P. solitum, P. verrucosum, P. commune and P. palitans. However, some difficulties appeared in distinguishing the closely related species P. commune and P. palitans. Such difficulties became greater on including more isolates and limiting the analysis to five of the species. The use of back-propagation artificial neural networks, in contrast, resulted in a correct classification in all cases. Thus, it is concluded that Curie point pyrolysis/mass spectrometry is useful in chemotaxonomic studies of the closely related species in the genus Penicillium.

摘要

利用530℃居里点箔片对青霉属菌种进行了居里点热解/质谱分析。将质谱数据进行主成分分析、典型变量分析和层次聚类分析,并采用平均连锁聚类法生成最终的树状图。通过这种方法,成功地对来源于水果的意大利青霉、扩展青霉和指状青霉进行了分类。同一菌种的分离株在树状图中聚集在一起,不同菌种得以区分。同样,当在两种不同的琼脂培养基上生长时,同一菌种的重复样本也聚集在一起。同样,通过对与奶酪相关的真菌杂色曲霉、变色青霉、罗克福特青霉、孤生青霉、疣状青霉、普通青霉和苍白青霉的各种分离株的数据进行多变量分析,也获得了令人满意的分类结果。然而,在区分亲缘关系密切的普通青霉和苍白青霉时出现了一些困难。当纳入更多分离株并将分析限制在其中5个菌种时,这些困难变得更大。相比之下,使用反向传播人工神经网络在所有情况下都能得到正确的分类。因此,可以得出结论,居里点热解/质谱分析在青霉属亲缘关系密切的菌种的化学分类学研究中是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验