Suppr超能文献

Validation of a new UNIX-based quantitative coronary angiographic system for the measurement of coronary artery lesions.

作者信息

Bell M R, Britson P J, Chu A, Holmes D R, Bresnahan J F, Schwartz R S

机构信息

Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.

出版信息

Cathet Cardiovasc Diagn. 1997 Jan;40(1):66-74. doi: 10.1002/(sici)1097-0304(199701)40:1<66::aid-ccd12>3.0.co;2-s.

Abstract

We describe a method of validation of computerized quantitative coronary arteriography and report the results of a new UNIX-based quantitative coronary arteriography software program developed for rapid on-line (digital) and off-line (digital or cinefilm) analysis. The UNIX operating system is widely available in computer systems using very fast processors and has excellent graphics capabilities. The system is potentially compatible with any cardiac digital x-ray system for on-line analysis and has been designed to incorporate an integrated database, have on-line and immediate recall capabilities, and provide digital access to all data. The accuracy (mean signed differences of the observed minus the true dimensions) and precision (pooled standard deviations of the measurements) of the program were determined x-ray vessel phantoms. Intra- and interobserver variabilities were assessed from in vivo studies during routine clinical coronary arteriography. Precision from the x-ray phantom studies (6-In. field of view) for digital images was 0.066 mm and for digitized cine images was 0.060 mm. Accuracy was 0.076 mm (overestimation) for digital images compared to 0.008 mm for digitized cine images. Diagnostic coronary catheters were also used for calibration; accuracy.varied according to size of catheter and whether or not they were filled with iodinated contrast. Intra- and interobserver variabilities were excellent and indicated that coronary lesion measurements were relatively user-independent. Thus, this easy to use and very fast UNIX based program appears to be robust with optimal accuracy and precision for clinical and research applications.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验