Suppr超能文献

An analysis of nasal irritation thresholds using a new solvation equation.

作者信息

Abraham M H, Andonian-Haftvan J, Cometto-Muñiz J E, Cain W S

机构信息

Christopher Ingold Laboratories, Department of Chemistry, University College London, London, United Kingdom.

出版信息

Fundam Appl Toxicol. 1996 May;31(1):71-6. doi: 10.1006/faat.1996.0077.

Abstract

In the present paper we have developed a quantitative structure-activity relationship (QSAR) equation for nasal pungency caused by nonreactive volatile organic compounds (VOCs). Our QSAR was developed upon previously published nasal pungency thresholds in anosmics, i.e., patients lacking a sense of smell and thus responding only to sensory irritation evoked by trigeminal nerve stimulation. The reported solvation equation, which fits the data with considerable precision, describes sensory potency in terms of interaction via electron pairs, dipolarity/polarizability, hydrogen bond acidity and basicity, and hydrophobicity. It correspondingly suggests relevant physicochemical properties of the biophase where the sensory response is brought about. The equation implies that in the range of molecular size where nonreactive VOCs can produce any pungency, transport from the air to the biophase strictly determines potency. In this respect, the potency of nasal pungency shares characteristics with the ability of VOCs to cause narcosis and anesthesia.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验