Suppr超能文献

An analysis of nasal irritation thresholds using a new solvation equation.

作者信息

Abraham M H, Andonian-Haftvan J, Cometto-Muñiz J E, Cain W S

机构信息

Christopher Ingold Laboratories, Department of Chemistry, University College London, London, United Kingdom.

出版信息

Fundam Appl Toxicol. 1996 May;31(1):71-6. doi: 10.1006/faat.1996.0077.

Abstract

In the present paper we have developed a quantitative structure-activity relationship (QSAR) equation for nasal pungency caused by nonreactive volatile organic compounds (VOCs). Our QSAR was developed upon previously published nasal pungency thresholds in anosmics, i.e., patients lacking a sense of smell and thus responding only to sensory irritation evoked by trigeminal nerve stimulation. The reported solvation equation, which fits the data with considerable precision, describes sensory potency in terms of interaction via electron pairs, dipolarity/polarizability, hydrogen bond acidity and basicity, and hydrophobicity. It correspondingly suggests relevant physicochemical properties of the biophase where the sensory response is brought about. The equation implies that in the range of molecular size where nonreactive VOCs can produce any pungency, transport from the air to the biophase strictly determines potency. In this respect, the potency of nasal pungency shares characteristics with the ability of VOCs to cause narcosis and anesthesia.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验