Suppr超能文献

使用带直径激励的拉格朗日乘数重建算法提高头部电阻抗断层成像(EIT)图像的定位精度。

Improvement of the positional accuracy of EIT images of the head using a Lagrange multiplier reconstruction algorithm with diametric excitation.

作者信息

Bayford R H, Boone K G, Hanquan Y, Holder D S

机构信息

Middlesex University, London, UK.

出版信息

Physiol Meas. 1996 Nov;17 Suppl 4A:A49-57. doi: 10.1088/0967-3334/17/4a/008.

Abstract

A novel algorithm for the reconstruction of dynamic images using diametric excitation has been developed. The algorithm is specifically designed to image impedance changes in the brain using boundary data obtained from scalp electrodes by incorporating a priori information. The a priori information is obtain by solving the forward problem using a finite-element model (FEM) which includes the discontinuity of the skull resistivity. The advantages with this new approach are that the sensitivity and accuracy of the location of the impedance changes are improved compared to methods based on adjacent excitation.

摘要

一种用于使用直径激励重建动态图像的新型算法已经被开发出来。该算法专门设计用于通过合并先验信息,利用从头皮电极获得的边界数据来对大脑中的阻抗变化进行成像。先验信息是通过使用包含颅骨电阻率不连续性的有限元模型(FEM)解决正向问题来获得的。这种新方法的优点是,与基于相邻激励的方法相比,阻抗变化位置的灵敏度和准确性得到了提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验