Bonmassar Giorgio, Lev Michael H
IEEE Trans Biomed Eng. 2013 Dec;60(12):3306-13. doi: 10.1109/TBME.2013.2280877. Epub 2013 Sep 10.
This paper describes an improved electrical impedance spectroscopy (EIS) stimulus paradigm, based on dual-energy pulses using the stochastic Gabor function (SGF) that may more sensitively assess deep brain tissue impedance than current single-pulse paradigms. The SGF is a uniformly distributed noise, modulated by a Gaussian envelope, with a wide-frequency spectrum representation regardless of the stimuli energy, and is least compact in the sample frequency phase plane. Numerical results obtained using a realistic human head model confirm that two sequential SGF pulses at different energies can improve EIS depth sensitivity when used in a dual-energy subtraction scheme. Specifically, although the two SGF pulses exhibit different tissue current distributions, they maintain the broadband sensing pulse characteristics needed to generate all the frequencies of interest. Moreover, finite-difference time domain simulations show that this dual-energy excitation scheme is capable of reducing the amplitude of weighted current densities surface directly underneath the electrodes by approximately 3 million times versus single stimulation pulses, while maintaining an acceptable tissue conductivity distribution at depth. This increased sensitivity for the detection of small, deep impedance changes might be of value in potential future EIS applications, such as the portable, point-of-care detection of deep brain hemorrhage or infarction.
本文描述了一种改进的电阻抗谱(EIS)刺激范式,该范式基于使用随机伽柏函数(SGF)的双能脉冲,与当前的单脉冲范式相比,它可能更灵敏地评估深部脑组织阻抗。SGF是一种由高斯包络调制的均匀分布噪声,具有宽频谱表示,与刺激能量无关,并且在采样频率相平面中最不紧凑。使用逼真的人体头部模型获得的数值结果证实,当在双能减法方案中使用时,两个不同能量的连续SGF脉冲可以提高EIS深度灵敏度。具体而言,尽管两个SGF脉冲表现出不同的组织电流分布,但它们保持了产生所有感兴趣频率所需的宽带传感脉冲特性。此外,时域有限差分模拟表明,与单刺激脉冲相比,这种双能激发方案能够将电极正下方表面的加权电流密度幅度降低约300万倍,同时在深度上保持可接受的组织电导率分布。这种对小的深部阻抗变化检测灵敏度的提高可能在未来潜在的EIS应用中具有价值,例如便携式即时检测深部脑出血或梗死。