Suppr超能文献

Benzene-, catechol-, hydroquinone- and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells.

作者信息

Tsutsui T, Hayashi N, Maizumi H, Huff J, Barrett J C

机构信息

Department of Pharmacology, School of Dentistry at Tokyo, Nippon Dental University, Japan.

出版信息

Mutat Res. 1997 Jan 3;373(1):113-23. doi: 10.1016/s0027-5107(96)00196-0.

Abstract

Benzene is a human carcinogen present naturally in petroleum and gasoline. For the simultaneous assessment of benzene-induced carcinogenicity and mutagenicity, benzene and its principal metabolites, phenol, catechol and hydroquinone were examined for their ability to induce cell transformation and genotoxic effects using the same mammalian cells in culture. Each of the four compounds induced morphological transformation of Syrian hamster embryo (SHE) cells. Catechol was the most potent, inducing transformation at concentrations of 1-30 microM, followed by hydroquinone (3-30 microM), phenol (10-100 microM) and benzene (only at 100 microM). Gene mutations at two loci in SHE cells were induced by all four compounds, with catechol being the most potent; both ouabain-resistant and 6-thioguanine-resistant mutant frequencies were increased. Chromosomal aberrations in SHE cells were especially induced by catechol, lesser by hydroquinone, and to a marginal extent by phenol at only the 100 microM concentration, whereas sister chromatid exchanges in SHE cells occurred with hydroquinone (1-30 microM), catechol (10-30 microM) and phenol (1000-3000 microM). Aneuploidy in the near diploid range of SHE cells was significantly induced by benzene and catechol. All three metabolites induced unscheduled DNA synthesis in SHE cells, whereas benzene did not. This is the first report that the cell transforming activity and mutagenicity of benzene and its metabolites were assessed with the same mammalian cells in culture. The results provide evidence that benzene and several of its metabolites are cell transforming and genotoxic to cultured mammalian cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验