Suppr超能文献

随机马尔可夫模型在解释壁球锦标赛表现中的发展、应用及局限性

Development, application, and limitation of a stochastic Markov model in explaining championship squash performance.

作者信息

McGarry T, Franks I M

机构信息

School of Human Kinetics, University of British Columbia.

出版信息

Res Q Exerc Sport. 1996 Dec;67(4):406-15. doi: 10.1080/02701367.1996.10607972.

Abstract

This study reports a stochastic (Markov) model for squash which uses empirical data to transit event states on a shot by shot basis. This offers more information than traditional models with regard to how points were won or lost and the potential for predicting future athletic performance from a priori observation. The predictive capacity of the model, however, is presently restricted because the observed behaviors (shots) and associated outcomes (winners, errors and lets) are statistically variant (p < .25). A player does not produce a consistent athletic response to the same preceding condition when competing against different opponents, although it is unclear at present whether this observation is a function of the particular analysis employed. Nevertheless, the modeling of athletic behavior is a way to search for critical data which underpin competitive sport performance.

摘要

本研究报告了一种用于壁球的随机(马尔可夫)模型,该模型基于逐球的情况,利用经验数据来转换事件状态。与传统模型相比,这在关于如何赢得或输掉分数以及从先验观察预测未来运动表现的可能性方面提供了更多信息。然而,该模型的预测能力目前受到限制,因为观察到的行为(击球)和相关结果(得分、失误和重发球)在统计上是可变的(p < 0.25)。当与不同对手比赛时,运动员对相同的先前条件不会产生一致的运动反应,尽管目前尚不清楚这一观察结果是否是所采用的特定分析的函数。尽管如此,对运动行为进行建模是一种寻找支撑竞技运动表现的关键数据的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验