Suppr超能文献

在对培养的大鼠前脑神经元进行强烈的谷氨酸刺激后,线粒体积累钙离子。

Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones.

作者信息

White R J, Reynolds I J

机构信息

Center for Neuroscience, University of Pittsburgh School of Medicine, PA 15261, USA.

出版信息

J Physiol. 1997 Jan 1;498 ( Pt 1)(Pt 1):31-47. doi: 10.1113/jphysiol.1997.sp021839.

Abstract
  1. In cultures of rat forebrain neurones, mitochondria buffer glutamate-induced, NMDA receptor-mediated Ca2+ influx. Here, we have used the fluorescent calcium indicator, indo-1 AM to record [Ca2+]i from single cells. We varied either the glutamate concentration or the duration of exposure to investigate the cellular mechanisms recruited to buffer [Ca2+]i within different stimulation protocols. 2. For a 15 s stimulus, the recovery time doubled as the glutamate concentration was raised from 3 to 300 microM. Changing the duration of exposure from 15 s to 5 min increased the recovery time tenfold even when the glutamate concentration was held at 3 microM. 3. We used a selective inhibitor of the mitochondrial Na(+)-Ca2+ exchange, CGP-37157. When applied immediately after a 15 s, 100 microM glutamate challenge, CGP-37157 consistently caused a rapid fall in [Ca2+]i followed by a slow rise after the drug was washed out. A similar pattern was seen with the 5 min, 3 microM glutamate stimulus. The effects of CGP-37157 are consistent with the release of substantial mitochondrial Ca2+ stores during recovery from an intense glutamate stimulus. 4. These studies suggest that mitochondria become progressively more important for buffering glutamate-induced Ca2+ loads as the stimulus intensity increases. The recovery of [Ca2+]i to baseline following glutamate removal is critically regulated by the release of Ca2+ from mitochondrial stores via mitochondrial Na(+)-Ca2+ exchange. The data highlight a previously under-appreciated role for [Na+]i in the regulation of [Ca2+]i in central neurones.
摘要
  1. 在大鼠前脑神经元培养物中,线粒体可缓冲谷氨酸诱导的、NMDA受体介导的Ca2+内流。在此,我们使用荧光钙指示剂indo-1 AM来记录单细胞内的[Ca2+]i。我们改变谷氨酸浓度或暴露持续时间,以研究在不同刺激方案下用于缓冲[Ca2+]i的细胞机制。2. 对于15秒的刺激,随着谷氨酸浓度从3微摩尔/升提高到300微摩尔/升,恢复时间加倍。即使谷氨酸浓度保持在3微摩尔/升,将暴露持续时间从15秒改为5分钟也会使恢复时间增加到原来的10倍。3. 我们使用了线粒体Na(+)-Ca2+交换的选择性抑制剂CGP-37157。在15秒、100微摩尔/升谷氨酸刺激后立即应用时,CGP-37157始终导致[Ca2+]i迅速下降,在药物洗脱后随后缓慢上升。在5分钟、3微摩尔/升谷氨酸刺激下也观察到类似模式。CGP-37157的作用与在强烈谷氨酸刺激恢复过程中线粒体Ca2+大量释放一致。4. 这些研究表明,随着刺激强度增加,线粒体对缓冲谷氨酸诱导的Ca2+负荷变得越来越重要。谷氨酸去除后[Ca2+]i恢复到基线水平受到线粒体通过线粒体Na(+)-Ca2+交换释放Ca2+的严格调控。数据突出了[Na+]i在调节中枢神经元[Ca2+]i方面以前未被充分认识的作用。

相似文献

引用本文的文献

3

本文引用的文献

4
Calcium homeostasis in rat septal neurons in tissue culture.组织培养中大鼠隔区神经元的钙稳态
Brain Res. 1993 Jan 15;600(2):257-67. doi: 10.1016/0006-8993(93)91381-2.
8
The quantity of calcium that appears to induce neuronal death.似乎会诱发神经元死亡的钙的量。
J Neurochem. 1994 Mar;62(3):1223-6. doi: 10.1046/j.1471-4159.1994.62031223.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验