Suppr超能文献

吸气过程中一氧化氮浓度的变化。

Variation of nitric oxide concentration during inspiration.

作者信息

Sydow M, Bristow F, Zinserling J, Allen S J

机构信息

Department of Anesthesiology, University of Texas Houston Medical School, 77030, USA.

出版信息

Crit Care Med. 1997 Feb;25(2):365-71. doi: 10.1097/00003246-199702000-00028.

Abstract

OBJECTIVE

To evaluate the pattern of inspiratory nitric oxide concentration in a simple, constant flow delivery system during the use of two phasic-flow ventilatory modes.

DESIGN

Laboratory study in a lung model.

SETTING

University experimental laboratory.

SUBJECT

Nitric oxide (800 ppm in nitrogen) was administered continuously into the inspiratory circuit to deliver a nitric oxide concentration of 10 and 40 ppm to a test lung during volume-controlled (constant flow) and pressure-controlled (decelerating flow) ventilation, with an FIO2 of 1.0.

INTERVENTIONS

In each mode, minute ventilation of 7, 14, and 21 L/min and installation of mixing chambers (none, 1-L, 2-L, and 3.2-L turbulence boxes) were studied, respectively. Nitric oxide and nitric dioxide were monitored by chemiluminescence. Since the nitric oxide/nitrogen gas is the only nitrogen source in the system during ventilation with an FIO2 of 1.0, we evaluated the fluctuation in the inspiratory nitric oxide (NOx) concentration by measuring nitrogen with a fast-response analyzer. To test the effect of the measurement site, we measured nitric oxide concentrations using chemiluminescence at different positions in the inspiratory and expiratory limbs, with and without the mixing chambers, with a minute ventilation of 14 L/min and a nitric oxide concentration of 40 ppm.

MEASUREMENTS AND MAIN RESULTS

Nitrogen dioxide production was not influenced by the flow pattern. During a nitric oxide concentration of 10 ppm, nitrogen dioxide was always < 0.6 ppm. During a nitric oxide concentration of 40 ppm, the highest nitrogen dioxide (4.47 ppm) concentration was found at the lowest minute ventilation and the largest inspiratory circuit volume. Nitric oxide values displayed by chemiluminescence indicated stable concentrations at all settings. However, without mixing chambers, NOx concentration calculated from nitrogen measurements demonstrated marked inspiratory fluctuations and was highest with a minute ventilation of 21 L/min and higher during pressure-controlled ventilation compared with volume-controlled ventilation (nitric oxide concentration of 40 ppm, pressure-controlled ventilation: 14.5 to 130.5 ppm; volume-controlled ventilation: 21.6 to 104.7 ppm; nitric oxide concentration of 10 ppm, pressure-controlled ventilation: 3.2 to 30.9 ppm; volume-controlled ventilation: 4.5 to 27.1 ppm). NOx concentration fluctuation decreased with an increasing mixing chamber, and was negligible at all settings with the 3.2-L turbulence box. Nitric oxide concentration fluctuation influenced chemiluminescence measurements. The displayed nitric oxide values varied, depending on the sampling site, and did not accurately reflect mean inspiratory nitric oxide concentration. Incorporation of a mixing chamber eradicated this sampling site influence.

CONCLUSIONS

Continuous flow delivery of nitric oxide into the circuit of a phasic-flow ventilator results in marked inspiratory nitric oxide concentration fluctuation that is not detected by a slow-response chemiluminescence analyzer. Moreover, nitric oxide concentration fluctuation can influence the accuracy of the chemiluminescence measurements. These effects can be diminished by using additional mixing chambers to facilitate a stable gas concentration. As these mixing volumes increase the contact time of nitric oxide with oxygen, an increase of nitrogen dioxide has to be taken into account.

摘要

目的

评估在使用两种相流通气模式期间,简单、恒流输送系统中吸入一氧化氮浓度的模式。

设计

在肺模型中进行的实验室研究。

设置

大学实验实验室。

对象

将一氧化氮(氮气中800 ppm)持续注入吸气回路,在容量控制(恒流)和压力控制(减速流)通气期间,向测试肺输送10 ppm和40 ppm的一氧化氮浓度,吸入氧分数为1.0。

干预措施

在每种模式下,分别研究了7、14和21 L/min的分钟通气量以及混合室(无、1 L、2 L和3.2 L湍流箱)的安装情况。通过化学发光法监测一氧化氮和二氧化氮。由于在吸入氧分数为1.0的通气过程中,一氧化氮/氮气是系统中唯一的氮源,我们使用快速响应分析仪测量氮气来评估吸入一氧化氮(NOx)浓度的波动。为了测试测量部位的影响,我们在有无混合室的情况下,在吸气和呼气支路的不同位置,使用化学发光法测量一氧化氮浓度,分钟通气量为14 L/min,一氧化氮浓度为40 ppm。

测量和主要结果

二氧化氮的产生不受气流模式的影响。在一氧化氮浓度为10 ppm时,二氧化氮始终<0.6 ppm。在一氧化氮浓度为40 ppm时,在最低分钟通气量和最大吸气回路容积时发现最高的二氧化氮(4.47 ppm)浓度。化学发光法显示的一氧化氮值在所有设置下均表明浓度稳定。然而,在没有混合室的情况下,根据氮气测量计算出的NOx浓度显示出明显的吸气波动,在分钟通气量为21 L/min时最高,并且在压力控制通气期间比容量控制通气期间更高(一氧化氮浓度为40 ppm,压力控制通气:14.5至130.5 ppm;容量控制通气:21.6至104.7 ppm;一氧化氮浓度为10 ppm,压力控制通气:3.2至30.9 ppm;容量控制通气:4.5至27.1 ppm)。随着混合室的增加,NOx浓度波动减小,在使用3.2 L湍流箱的所有设置下波动可忽略不计。一氧化氮浓度波动影响化学发光测量。显示的一氧化氮值因采样部位而异,不能准确反映平均吸入一氧化氮浓度。加入混合室消除了这种采样部位的影响。

结论

将一氧化氮持续流入相流通气机回路会导致明显的吸入一氧化氮浓度波动,而慢响应化学发光分析仪无法检测到这种波动。此外,一氧化氮浓度波动会影响化学发光测量的准确性。通过使用额外的混合室促进稳定的气体浓度,可以减少这些影响。由于这些混合容积增加了一氧化氮与氧气的接触时间,必须考虑二氧化氮的增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验