Duncan J R, Stephenson M T, Wu H P, Anderson C J
The Mallinckrodt Institute of Radiology and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Cancer Res. 1997 Feb 15;57(4):659-71.
To better understand the factors that govern the target-to-background ratios of 111In-diethylenetriaminepentaacetic acid (DTPA) polypeptides, we studied 111In-DTPA-octreotide and a model nontargeted compound, 111In-DTPA-poly(D)lysine-biotin. We evaluated the fate of 111In-DTPA-octreotide after it localizes in somatostatin receptor-positive tissues and sought to determine why such a large fraction of these and other 111In-DTPA-polypeptides accumulate in the liver and kidneys. Biodistribution studies in rats with an implanted pancreatic adenocarcinoma demonstrated rapid accumulation of 111In-DTPA-octreotide in the pancreas and tumor. Indium-111 also accumulated in the liver and kidneys. Subcellular fractionation of the liver, kidneys, tumor, and pancreas showed that the majority of the radioactivity copurified with lysosomal enzymes. Even at 1 h, little radioactivity was found in the fractions containing a cell surface enzyme. This suggests that in each tissue, the 111In-DTPA-octreotide was rapidly shuttled from the cell surface to lysosomes. In the liver, hepatocyte lysosomes were separated from sinusoidal and Kupffer cell lysosomes by administering chloroquine prior to sacrifice. This density shift experiment indicated that 111In-DTPA-octreotide accumulated predominantly in hepatocyte lysosomes. A low molecular weight 111In-DTPA-poly(D)lysine-biotin compound was synthesized, and biodistribution studies showed substantial renal accumulation. The poly(D)lysine backbone conferred resistance to degradation, and this fact allowed determination of the distribution of this compound at the cellular level using an antibiotin antibody and immunohistochemical techniques. These experiments, as well as subcellular fractionation studies, demonstrated that the 111In-DTPA-poly(D)lysine-biotin compound accumulated in the lysosomes of proximal renal tubular cells. These results indicate that lysosomes play a critical role in the cellular physiology of radiolabeled polypeptides. Using these data, we propose a comprehensive model that summarizes the factors that govern the target to background ratios of radiolabeled polypeptides.
为了更好地理解控制铟 - 111标记的二乙三胺五乙酸(DTPA)多肽靶本底比值的因素,我们研究了铟 - 111标记的奥曲肽以及一种非靶向性模型化合物,即铟 - 111标记的聚(D)赖氨酸 - 生物素 - DTPA。我们评估了铟 - 111标记的奥曲肽在定位到生长抑素受体阳性组织后的去向,并试图确定为何这类以及其他铟 - 111标记的DTPA多肽中有很大一部分会在肝脏和肾脏中蓄积。对植入胰腺腺癌的大鼠进行的生物分布研究表明,铟 - 111标记的奥曲肽在胰腺和肿瘤中迅速蓄积。铟 - 111也在肝脏和肾脏中蓄积。对肝脏、肾脏、肿瘤和胰腺进行亚细胞分级分离显示,大部分放射性与溶酶体酶共纯化。即使在1小时时,在含有细胞表面酶的级分中也几乎没有发现放射性。这表明在每个组织中,铟 - 111标记的奥曲肽都迅速从细胞表面转运到溶酶体。在肝脏中,在处死前通过给予氯喹将肝细胞溶酶体与窦状隙和枯否细胞溶酶体分离。这种密度转移实验表明,铟 - 111标记的奥曲肽主要蓄积在肝细胞溶酶体中。合成了一种低分子量的铟 - 111标记的聚(D)赖氨酸 - 生物素 - DTPA化合物,生物分布研究显示其在肾脏中有大量蓄积。聚(D)赖氨酸主链赋予了抗降解能力,这一事实使得可以使用抗生物素抗体和免疫组织化学技术在细胞水平上确定该化合物的分布。这些实验以及亚细胞分级分离研究表明,铟 - 111标记的聚(D)赖氨酸 - 生物素 - DTPA化合物蓄积在近端肾小管细胞的溶酶体中。这些结果表明溶酶体在放射性标记多肽的细胞生理学中起关键作用。利用这些数据,我们提出了一个综合模型,总结了控制放射性标记多肽靶本底比值的因素。