McMahon L L, Kauer J A
Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
Neuron. 1997 Feb;18(2):295-305. doi: 10.1016/s0896-6273(00)80269-x.
Individual GABAergic interneurons in hippocampus can powerfully inhibit more than a thousand excitatory pyramidal neurons. Therefore, control of interneuron excitability provides control over hippocampal networks. We have identified a novel mechanism in hippocampus that weakens excitatory synapses onto GABAergic interneurons. Following stimulation that elicits long-term potentiation at neighboring synapses onto excitatory cells, excitatory synapses onto inhibitory interneurons undergo a long-term synaptic depression (interneuron LTD; iLTD). Unlike most other forms of hippocampal synaptic plasticity, iLTD is not synapse specific: stimulation of an afferent pathway triggers depression not only of activated synapses but also of inactive excitatory synapses onto the same interneuron. These results suggest that high frequency afferent activity increases hippocampal excitability through a dual mechanism, simultaneously potentiating synapses onto excitatory neurons and depressing synapses onto inhibitory neurons.
海马体中的单个γ-氨基丁酸能中间神经元能够有力地抑制一千多个兴奋性锥体神经元。因此,控制中间神经元的兴奋性就能控制海马体网络。我们在海马体中发现了一种新机制,该机制会削弱作用于γ-氨基丁酸能中间神经元的兴奋性突触。在对兴奋性细胞的相邻突触进行刺激并引发长时程增强后,作用于抑制性中间神经元的兴奋性突触会经历长时程突触抑制(中间神经元长时程抑制;iLTD)。与大多数其他形式的海马体突触可塑性不同,iLTD不是突触特异性的:刺激传入通路不仅会触发同一中间神经元上已激活突触的抑制,还会触发未激活的兴奋性突触的抑制。这些结果表明,高频传入活动通过双重机制增加海马体兴奋性,同时增强作用于兴奋性神经元的突触并抑制作用于抑制性神经元的突触。