Bell J B, Eckert K A, Joyce C M, Kunkel T A
Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
J Biol Chem. 1997 Mar 14;272(11):7345-51. doi: 10.1074/jbc.272.11.7345.
A mutant derivative of Klenow fragment DNA polymerase containing serine substituted for tyrosine at residue 766 has been shown by kinetic analysis to have an increased misinsertion rate relative to wild-type Klenow fragment, but a decreased rate of extension from the resulting mispairs (Carroll, S. S., Cowart, M., and Benkovic, S. J. (1991) Biochemistry 30, 804-813). In the present study we use an M13mp2-based fidelity assay to study the error specificity of this mutator polymerase. Despite its compromised ability to extend mispairs, the Y766S polymerase and a Y766A mutant both have elevated base substitution error rates. The magnitude of the mutator effect is mispair-specific, from no effect for some mispairs to rates elevated by 60-fold for misincorporation of TMP opposite template G. The results with the Y766S mutant are remarkably consistent with the earlier kinetic analysis of misinsertion, demonstrating that either approach can be used to identify and characterize mutator polymerases. Both the Y766S and Y766A mutant polymerases are also frameshift mutators, having elevated rates for two-base deletions and a 276-base deletion between a direct repeat sequence. However, neither mutant polymerase has an increased error rate for single-base frameshifts in repetitive sequences. This error specificity suggests that the deletions generated by the mutator polymerases are initiated by misinsertion rather than by strand slippage. When considered with recent structure-function studies of other polymerases, the data indicate that the nucleotide misinsertion and strand-slippage mechanisms for polymerization infidelity are differentially affected by changes in distinct structural elements of DNA polymerases that share similar subdomain structures.
通过动力学分析表明,在第766位残基处将酪氨酸替换为丝氨酸的Klenow片段DNA聚合酶突变衍生物,相对于野生型Klenow片段具有更高的错配插入率,但从由此产生的错配处延伸的速率降低(卡罗尔,S.S.,考尔特,M.,和本科维奇,S.J.(1991年)《生物化学》30,804 - 813)。在本研究中,我们使用基于M13mp2的保真度测定法来研究这种诱变聚合酶的错误特异性。尽管其延伸错配的能力受损,但Y766S聚合酶和Y766A突变体的碱基替换错误率均有所升高。诱变效应的大小是错配特异性的,从对某些错配无影响到与模板G相对的TMP错掺入时速率升高60倍。Y766S突变体的结果与早期错配插入的动力学分析非常一致,表明这两种方法均可用于鉴定和表征诱变聚合酶。Y766S和Y766A突变体聚合酶也是移码诱变剂,在直接重复序列之间的双碱基缺失和276碱基缺失的发生率升高。然而,两种突变聚合酶在重复序列中的单碱基移码错误率均未增加。这种错误特异性表明,诱变聚合酶产生的缺失是由错配插入而非链滑动引发的。与最近其他聚合酶的结构 - 功能研究一起考虑时,数据表明,DNA聚合酶不同结构元件的变化对聚合保真度的核苷酸错配插入和链滑动机制有不同影响,这些结构元件具有相似的亚结构域结构。