Ponten A, Sick C, Weeber M, Haller O, Kochs G
Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, Germany.
J Virol. 1997 Apr;71(4):2591-9. doi: 10.1128/JVI.71.4.2591-2599.1997.
Human MxA protein is an interferon-induced 76-kDa GTPase that exhibits antiviral activity against several RNA viruses. Wild-type MxA accumulates in the cytoplasm of cells. TMxA, a modified form of wild-type MxA carrying a foreign nuclear localization signal, accumulates in the cell nucleus. Here we show that MxA protein is translocated into the nucleus together with TMxA when both proteins are expressed simultaneously in the same cell, demonstrating that MxA molecules form tight complexes in living cells. To define domains important for MxA-MxA interaction and antiviral function in vivo, we expressed mutant forms of MxA together with wild-type MxA or TMxA in appropriate cells and analyzed subcellular localization and interfering effects. An MxA deletion mutant, MxA(359-572), formed heterooligomers with TMxA and was translocated to the nucleus, indicating that the region between amino acid positions 359 and 572 contains an interaction domain which is critical for oligomerization of MxA proteins. Mutant T103A with threonine at position 103 replaced by alanine had lost both GTPase and antiviral activities. T103A exhibited a dominant-interfering effect on the antiviral activity of wild-type MxA rendering MxA-expressing cells susceptible to infection with influenza A virus, Thogoto virus, and vesicular stomatitis virus. To determine which sequences are critical for the dominant-negative effect of T103A, we expressed truncated forms of T103A together with wild-type protein. A C-terminal deletion mutant lacking the last 90 amino acids had lost interfering capacity, indicating that an intact C terminus was required. Surprisingly, a truncated version of MxA representing only the C-terminal half of the molecule exerted also a dominant-negative effect on wild-type function, demonstrating that sequences in the C-terminal moiety of MxA are necessary and sufficient for interference. However, all MxA mutants formed hetero-oligomers with TMxA and were translocated to the nucleus, indicating that physical interaction alone is not sufficient for disturbing wild-type function. We propose that dominant-negative mutants directly influence wild-type activity within hetero-oligomers or else compete with wild-type MxA for a cellular or viral target.
人MxA蛋白是一种干扰素诱导的76 kDa GTP酶,对多种RNA病毒具有抗病毒活性。野生型MxA在细胞质中积累。TMxA是携带外源核定位信号的野生型MxA的修饰形式,在细胞核中积累。在这里,我们表明,当MxA蛋白和TMxA在同一细胞中同时表达时,MxA蛋白会与TMxA一起转运到细胞核中,这表明MxA分子在活细胞中形成紧密复合物。为了确定体内对MxA-MxA相互作用和抗病毒功能重要的结构域,我们在合适的细胞中共同表达MxA的突变形式与野生型MxA或TMxA,并分析亚细胞定位和干扰作用。一个MxA缺失突变体MxA(359 - 572)与TMxA形成异源寡聚体并转运到细胞核,这表明氨基酸位置359和572之间的区域包含一个对MxA蛋白寡聚化至关重要的相互作用结构域。第103位苏氨酸被丙氨酸取代的突变体T103A同时丧失了GTP酶活性和抗病毒活性。T103A对野生型MxA的抗病毒活性表现出显性干扰作用,使表达MxA的细胞易受甲型流感病毒、托戈托病毒和水疱性口炎病毒感染。为了确定哪些序列对T103A的显性负效应至关重要,我们将截短形式的T103A与野生型蛋白一起表达。一个缺少最后90个氨基酸的C末端缺失突变体失去了干扰能力,这表明完整的C末端是必需的。令人惊讶的是,仅代表分子C末端一半的截短形式的MxA对野生型功能也表现出显性负效应,这表明MxA C末端部分的序列对于干扰是必要且充分的。然而,所有MxA突变体都与TMxA形成异源寡聚体并转运到细胞核,这表明仅物理相互作用不足以干扰野生型功能。我们提出,显性负突变体直接影响异源寡聚体内的野生型活性,或者与野生型MxA竞争细胞或病毒靶点。