Suppr超能文献

七种耐药小细胞肺癌细胞系的体外交叉耐药性和协同敏感性:多西他赛、紫杉醇、拓扑替康和吉西他滨合适联合用药伙伴的临床前鉴定

In vitro cross-resistance and collateral sensitivity in seven resistant small-cell lung cancer cell lines: preclinical identification of suitable drug partners to taxotere, taxol, topotecan and gemcitabin.

作者信息

Jensen P B, Holm B, Sorensen M, Christensen I J, Sehested M

机构信息

Laboratory of Experimental Medical Oncology, The Finsen Center, Rigshospitalet, Copenhagen, Denmark.

出版信息

Br J Cancer. 1997;75(6):869-77. doi: 10.1038/bjc.1997.154.

Abstract

The acquisition of drug-resistant tumour cells is the main problem in the medical treatment of a range of malignant diseases. In recent years, three new classes of anti-cancer agents, each with a novel mechanism of action, have been brought forward to clinical trials. These are the topoisomerase I (topo I) poisons topotecan and irinotecan, which are both camptothecin derivatives, the taxane tubulin stabilizers taxol and taxotere and, finally, the antimetabolite gemcitabin, which is active in solid tumours. The process of optimizing their use in a combination with established agents is very complex, with numerous possible drug and schedule regimens. We describe here how a broad panel of drug-resistant small-cell lung cancer (SCLC) cell lines can be used as a model of tumour heterogeneity to aid in the selection of non-cross-resistant regimens. We have selected low-fold (3-10x) drug-resistant sublines from a classic (NCI-H69) and a variant (OC-NYH) SCLC cell line. The resistant cell lines include two sublines with different phenotypes towards alkylating agents (H69/BCNU and NYH/CIS), two sublines with different phenotypes against topo I poisons (NYH/CAM and NYH/TPT) and three multidrug resistant (MDR) sublines (H69/DAU, NYH/VM, and H69/VP) with combinations of mdr1 and MRP overexpression as well as topoisomerase II (topo II) down-regulation or mutation. Sensitivity to 20 established and new agents was measured in a standardized clonogenic assay. Resistance was highly drug specific. Thus, none of the cell lines was resistant to all drugs. In fact, all resistant cell lines exhibited patterns of collateral sensitivity to various different classes of drugs. The most intriguing pattern was collateral sensitivity to gemcitabin in two cell lines and to ara-C in five drug-resistant cell lines, i.e. in all lines except the lines resistant to topo I poisons. Next, all sensitivity patterns in the nine cell lines were compared by correlation analysis. A high correlation coefficient (CC) for a given pair of compounds indicates a similar pattern in response in the set of cell lines. Such data corroborate the view that there is cross-resistance among the drugs. A numerically low coefficient indicates that the two drugs are acting in different ways, suggesting a lack of cross-resistance between the drugs, and a negative correlation coefficient implies that two drugs exhibit collateral sensitivity. The most negative CCs (%) to the new drug leads were: taxotere-carmustine (BCNU) (-75), taxol-cisplatin (-58), ara-C-taxol (-25), gemcitabin-doxorubicin (-32), camptotecin-VM26 (-41) and topotecan-VP16 (-17). The most negative correlations to the clinically important agent VP-16 were: cisplatin (-70); BCNU (-68); camptothecin (-38); bleomycin (-33), gemcitabin (-32); ara-C (-21); topotecan (-17); melphalan (-3); and to the other main drug in SCLC treatment cisplatin were: doxorubicin (-70); VP-16 (-70); VM-26 (-69); mAMSA (-64); taxotere (-58); taxol (-58). Taxol and taxotere were highly correlated (cross-resistant) to VP-16 (0.76 and 0.81 respectively) and inversely correlated to cisplatin (both -0.58). Similarly, camptothecin and topotecan were correlated to cisplatin but inversely correlated to VP-16 and other topo II poisons. From the sensitivity data, we conclude that collateral sensitivity and lack of cross-resistance favours a cisplatin-taxane or topo I-topo II poison combination, whereas patterns of cross-resistance suggest that epipodophyllotoxin-taxane or topo I poison-cisplatin combinations may be disadvantageous.

摘要

获得耐药肿瘤细胞是多种恶性疾病医学治疗中的主要问题。近年来,三类新型抗癌药物已进入临床试验,每类药物都有独特的作用机制。它们分别是拓扑异构酶I(topo I)抑制剂拓扑替康和伊立替康,二者均为喜树碱衍生物;紫杉烷类微管稳定剂紫杉醇和多西他赛;以及对实体瘤有效的抗代谢药物吉西他滨。将它们与现有药物联合使用的优化过程非常复杂,有众多可能的药物和给药方案。我们在此描述如何利用一组广泛的耐药小细胞肺癌(SCLC)细胞系作为肿瘤异质性模型,以帮助选择非交叉耐药方案。我们从一个经典的(NCI-H69)和一个变异的(OC-NYH)SCLC细胞系中筛选出低倍数(3-10倍)耐药亚系。耐药细胞系包括两个对烷化剂有不同表型的亚系(H69/BCNU和NYH/CIS)、两个对topo I抑制剂有不同表型的亚系(NYH/CAM和NYH/TPT)以及三个多药耐药(MDR)亚系(H69/DAU、NYH/VM和H69/VP),这些亚系存在mdr1和MRP过表达以及拓扑异构酶II(topo II)下调或突变的组合。通过标准化的克隆形成试验测定了这些细胞系对20种现有药物和新药的敏感性。耐药具有高度的药物特异性。因此,没有一个细胞系对所有药物都耐药。实际上,所有耐药细胞系对各种不同类别的药物都表现出旁敏感性模式。最有趣的模式是两个细胞系对吉西他滨以及五个耐药细胞系对阿糖胞苷表现出旁敏感性,即在除对topo I抑制剂耐药的细胞系之外的所有细胞系中。接下来,通过相关性分析比较了九个细胞系中的所有敏感性模式。给定的一对化合物的高相关系数(CC)表明在细胞系组中的反应模式相似。这些数据证实了药物之间存在交叉耐药的观点。数值较低的系数表明这两种药物的作用方式不同,提示药物之间缺乏交叉耐药,而负相关系数意味着两种药物表现出旁敏感性。对新药的最负CC(%)值为:多西他赛-卡莫司汀(BCNU)(-75)、紫杉醇-顺铂(-58)、阿糖胞苷-紫杉醇(-25)、吉西他滨-多柔比星(-32)、喜树碱-VM26(-41)和拓扑替康-VP16(-17)。与临床上重要的药物VP-16的最负相关性为:顺铂(-70);BCNU(-68);喜树碱(-38);博来霉素(-33)、吉西他滨(-32);阿糖胞苷(-21);拓扑替康(-17);美法仑(-3);以及与SCLC治疗中的另一种主要药物顺铂的最负相关性为:多柔比星(-70);VP-16(-70);VM-26(-69);mAMSA(-64);多西他赛(-58);紫杉醇(-58)。紫杉醇和多西他赛与VP-16高度相关(交叉耐药)(分别为0.76和0.81),与顺铂呈负相关(均为-0.58)。同样,喜树碱和拓扑替康与顺铂相关,但与VP-16和其他topo II抑制剂呈负相关。从敏感性数据中,我们得出结论,旁敏感性和缺乏交叉耐药有利于顺铂-紫杉烷或topo I-topo II抑制剂组合,而交叉耐药模式表明表鬼臼毒素-紫杉烷或topo I抑制剂-顺铂组合可能不利。

相似文献

6
Development of taxane resistance in a panel of human lung cancer cell lines.
Toxicol In Vitro. 2008 Aug;22(5):1234-41. doi: 10.1016/j.tiv.2008.04.005. Epub 2008 Apr 15.
8
["State-of-the-art" chemotherapy for small-cell lung cancer].
Gan To Kagaku Ryoho. 1997 Oct;24 Suppl 3:398-404.
9
[Developed new agents for lung cancer].
Nihon Geka Gakkai Zasshi. 2002 Feb;103(2):218-23.
10
Mechanisms of resistance of human small cell lung cancer lines selected in VP-16 and cisplatin.
Cancer. 1996 May 1;77(9):1797-808. doi: 10.1002/(SICI)1097-0142(19960501)77:9<1797::AID-CNCR7>3.0.CO;2-9.

引用本文的文献

2
Functionalized Lineage Tracing Can Enable the Development of Homogenization-Based Therapeutic Strategies in Cancer.
Front Immunol. 2022 May 6;13:859032. doi: 10.3389/fimmu.2022.859032. eCollection 2022.
3
The population genetics of collateral resistance and sensitivity.
Elife. 2021 Dec 10;10:e73250. doi: 10.7554/eLife.73250.
4
Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance.
Theranostics. 2021 Apr 19;11(13):6334-6354. doi: 10.7150/thno.59342. eCollection 2021.
6
Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms.
Sci Adv. 2020 Feb 7;6(6):eaav7416. doi: 10.1126/sciadv.aav7416. eCollection 2020 Feb.
7
The Promising Connection Between Data Science and Evolutionary Theory in Oncology.
Front Oncol. 2020 Jan 20;9:1527. doi: 10.3389/fonc.2019.01527. eCollection 2019.
9
Limited Evolutionary Conservation of the Phenotypic Effects of Antibiotic Resistance Mutations.
Mol Biol Evol. 2019 Aug 1;36(8):1601-1611. doi: 10.1093/molbev/msz109.

本文引用的文献

4
Single-agent activity of weekly gemcitabine in advanced non-small-cell lung cancer: a phase II study.
J Clin Oncol. 1994 Sep;12(9):1821-6. doi: 10.1200/JCO.1994.12.9.1821.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验