Sanakis Y, Goussias C, Mason R P, Petrouleas V
Institute of Materials Science, NCSR Democritos, Aghia Paraskevi Attikis, Athens, Greece.
Biochemistry. 1997 Feb 11;36(6):1411-7. doi: 10.1021/bi9622074.
Incubation of photosystem II, PSII, membranes with NO for a few minutes results in the reversible elimination of the electron paramagnetic resonance (EPR) signal II from the oxidized Tyr Y(D)., presumably due to the formation of a weak Tyr Y(D).-NO complex [Petrouleas, V., & Diner, B. A. (1990) Biochim. Biophys. Acta 1015, 131-140]. Illumination of such a sample at ambient or cryogenic temperatures produces no new EPR signals. If, however, the incubation with NO is extended to the hours time range, illumination induces an EPR signal with resolved hyperfine structure in the g = 2 region. The signal shows the typical features of an immobilized iminoxyl radical (> C=NO.) with hyperfine values A(parallel) = 44 G, A(perpendicular) = 22 G, and A(iso) = 29.3 G. The following observations suggest that the iminoxyl signal is associated with PSII: (a) the signal results from an immobilized species at room temperature probably associated with a membrane-bound component, (b) the abundance of the signal is (sub)stoichiometric to PSII, (c) the signal is light-induced, (d) some of the treatments that affect PSII (Tris, Ca2+ depletion, high-salt wash) severely diminish the size of the signal, and (e) the development of the signal correlates with the release of Mn. In addition, the following observations suggest that the iminoxyl signal results from an interaction of Y(D). with NO: (a) the evolution of the signal correlates with the loss in reversibility of the Tyr Y(D).-NO interaction and (b) the size of the signal correlates with the initial amount of oxidized Tyr Y(D). It is accordingly proposed that during the incubation with NO, a weak Tyr Y(D).-NO complex is rapidly formed and is then slowly converted to a tyrosine-nitroso adduct. Light-induced oxidation of the latter produces the iminoxyl radical. The nitrosotyrosine is expected to have an oxidation potential significantly lower than the parent tyrosine and can act as an efficient electron donor in PSII even at cryogenic temperatures. It is probably this lowered redox potential of the tyrosine Y(D) that explains the release of Mn concomitant with the formation of the nitroso species.
用一氧化氮(NO)处理光系统II(PSII)膜几分钟,会导致氧化态的Tyr Y(D)处的电子顺磁共振(EPR)信号II可逆性消失,这可能是由于形成了一种弱的Tyr Y(D).-NO复合物[彼得鲁利亚斯,V.,& 迪纳,B. A.(1990年)《生物化学与生物物理学报》1015,131 - 140]。在环境温度或低温下照射这样的样品不会产生新的EPR信号。然而,如果用NO处理的时间延长到数小时,照射会在g = 2区域诱导出具有分辨超精细结构的EPR信号。该信号显示出固定化亚胺氧基自由基(> C=NO.)的典型特征,超精细值A(平行)= 44 G,A(垂直)= 22 G,A(各向同性)= 29.3 G。以下观察结果表明亚胺氧基信号与PSII相关:(a)该信号来自室温下的固定化物种,可能与膜结合成分有关;(b)信号的丰度与PSII呈(亚)化学计量关系;(c)信号是光诱导的;(d)一些影响PSII的处理(Tris、Ca2+耗尽、高盐洗涤)会严重减小信号的大小;(e)信号的发展与锰的释放相关。此外,以下观察结果表明亚胺氧基信号是由Y(D).与NO的相互作用产生的:(a)信号的演变与Tyr Y(D).-NO相互作用的可逆性丧失相关;(b)信号的大小与氧化态Tyr Y(D)的初始量相关。因此,有人提出在与NO孵育期间,会迅速形成一种弱的Tyr Y(D).-NO复合物,然后缓慢转化为酪氨酸亚硝基加合物。后者的光诱导氧化产生亚胺氧基自由基。预期亚硝基酪氨酸的氧化电位明显低于母体酪氨酸,并且即使在低温下也能在PSII中作为有效的电子供体。可能正是酪氨酸Y(D)这种降低的氧化还原电位解释了与亚硝基物种形成相伴的锰的释放。