Pelkonen P, Lang M A, Negishi M, Wild C P, Juvonen R O
Department of Pharmacology and Toxicology, University of Kuopio, Finland.
Chem Res Toxicol. 1997 Jan;10(1):85-90. doi: 10.1021/tx960078m.
Among members of the mouse cytochrome P450 2A family, P450 2A5 is the best catalyst of aflatoxin B1 (AFB1) oxidation to its 8,9-epoxide (Pelkonen, P., Lang, M., Wild, C. P., Negishi, M., and Juvonen, R. O. (1994) Eur. J. Pharmacol., Environ. Toxicol. Pharmacol. Sect. 292, 67-73). Here we studied the role of amino acid residues 209 and 365 of the P450 2A5 in the metabolism and toxicity of AFB1 using recombinant yeasts. The two sites have previously been shown to be essential in the interaction of coumarin and steroids with the P450 2A5. Reducing the size of the amino acid at position 209 or introducing a negatively charged residue at this site increased the 8,9-epoxidation of AFB1 compared to the wild type. In addition, replacing the hydrophobic amino acid at the 365 position with a positively charged lysine residue strongly decreased the metabolism of AFB1. These mutations changed the KM values generally less than the Vmax values. The changes in AFB1 metabolism contrast with the changes in coumarin 7-hydroxylation caused by these amino acid substitutions, since reducing the size of the 209 residue strongly reduced coumarin metabolism and increased the K(M) values. On the other hand, the results with AFB1 are similar to those obtained with steroid hydroxylation. This suggests that the size of the substrate is important when interacting with the residue 209 of the protein. The catalytic parameters of AFB1 correlated generally with its toxicity to the recombinant yeasts expressing the activating enzyme and with the binding of AFB1 to yeast DNA. Furthermore high affinity substrates and inhibitors (e.g., methoxsalen, metyrapone, coumarin 311, 7-methylcoumarin, coumarin, and pilocarpine) of P450 2A5 could efficiently block the toxicity of AFB1. It is suggested that the recombinant yeasts expressing engineered P450 enzymes are a useful model to understand the substrate protein interactions, to study the relationship of metabolic parameters to toxicity, and to test potential inhibitors of metabolism based toxicity.
在小鼠细胞色素P450 2A家族成员中,P450 2A5是黄曲霉毒素B1(AFB1)氧化生成其8,9 - 环氧化物的最佳催化剂(佩尔孔宁,P.,朗,M.,怀尔德,C.P.,根岸,M.,和尤沃宁,R.O.(1994年)《欧洲药理学杂志,环境毒理学与药理学分册》292卷,67 - 73页)。在此,我们利用重组酵母研究了P450 2A5的209位和365位氨基酸残基在AFB1代谢和毒性中的作用。先前已表明这两个位点在香豆素和类固醇与P450 2A5的相互作用中至关重要。与野生型相比,减小209位氨基酸的大小或在该位点引入带负电荷的残基会增加AFB1的8,9 - 环氧化作用。此外,将365位的疏水氨基酸替换为带正电荷的赖氨酸残基会强烈降低AFB1的代谢。这些突变通常使米氏常数(KM)值的变化小于最大反应速度(Vmax)值的变化。AFB1代谢的变化与这些氨基酸取代引起的香豆素7 - 羟化作用的变化形成对比,因为减小209位残基的大小会强烈降低香豆素代谢并增加米氏常数(K(M))值。另一方面,AFB1的结果与类固醇羟化作用的结果相似。这表明底物的大小在与蛋白质的209位残基相互作用时很重要。AFB1的催化参数通常与其对表达激活酶的重组酵母的毒性以及AFB1与酵母DNA的结合相关。此外,P450 2A5的高亲和力底物和抑制剂(例如甲氧沙林、美替拉酮、香豆素311、7 - 甲基香豆素、香豆素和毛果芸香碱)可以有效阻断AFB1的毒性。有人提出,表达工程化P450酶的重组酵母是理解底物 - 蛋白质相互作用、研究代谢参数与毒性关系以及测试基于代谢的毒性潜在抑制剂的有用模型。