Suppr超能文献

脑水的正常与病理生理学

The normal and pathological physiology of brain water.

作者信息

Go K G

机构信息

Department of Neurosurgery, University of Groningen, The Netherlands.

出版信息

Adv Tech Stand Neurosurg. 1997;23:47-142. doi: 10.1007/978-3-7091-6549-2_2.

Abstract

The physicochemical properties of water enable it to act as a solvent for electrolytes, and to influence the molecular configuration and hence the function--enzymatic in particular--of polypeptide chains in biological systems. The association of water with electrolytes determines the osmotic regulation of cell volume and allows the establishment of the transmembrane ion concentration gradients that underlie nerve excitation and impulse conduction. Fluid in the central nervous system is distributed in the intracellular and extracellular spaces (ICS, ECS) of the brain parenchyma, the cerebrospinal fluid, and the vascular compartment--the brain capillaries and small arteries and veins. Regulated exchange of fluid between these various compartments occurs at the blood-brain barrier (BBB), and at the ventricular ependyma and choroid plexus, and, on the brain surface, at the pia mater. The normal BBB is relatively permeable to water, but considerably less so to ions, including the principal electrolytes Brain fluid regulation takes place within the context of systemic fluid volume control, which depends on the mutual interaction of osmo-, volume-, and pressure-receptors in the hypothalamus, heart and kidney, hormones such as vasopressin, renin-angiotensin, aldosterone, atriopeptins, and digitalis-like immunoreactive substance, and their respective sites of action. Evidence for specific transport capabilities of the cerebral capillary endothelium, for example high Na+K(+)-ATPase activity and the presence at the abluminal surface of a Na(+)--H+ antiporter, suggests that cerebral microvessels play a more active part in brain volume regulation and ion homoeostasis than do capillaries in other vascular beds. The normal brain ECS amounts to 12-19% of brain volume, and is markedly reduced in anoxia, ischaemia, metabolic poisoning, spreading depression, and conventional procedures for histological fixation. The asymmetrical distributions of Na+ K+ and Ca2+ between ICS and ECS underlie the roles of these cations in nerve excitation and conduction, and in signal transduction. The relatively large volume of the CSF, and extensive diffusional exchange of many substances between brain ECS and CSF, augment the ion-homeostasing capacity of the ECS. The choroid plexus, in addition to secreting CSF principally by biochemical mechanisms (there is an additional small component from the extracellular fluid), actively transports some substances from the blood (e.g. nucleotides and ascorbic acid), and actively removes others from the CSF. In contrast with CSF secretion, CSF reabsorption is principally a biomechanical process, passively dependent on the CSF-dural sinus pressure gradient. Pathological increases in intracranial water content imply development of an intracranial mass lesion. The additional water may be distributed diffusely within the brain parenchyma as brain oedema, as a cyst, or as increase in ventricular volume due to hydrocephalus. Brain oedema is classified on the basis of pathophysiology into four categories, vasogenic, cytotoxic, osmotic and hydrostatic. The clinical conditions in which brain oedema presents the greatest problems are tumour, ischaemia, and head injury. Peritumoural oedema is predominantly vasogenic and related to BBB dysfunction. Ischaemic oedema is initially cytotoxic, with a shift of Na+ and CI- ions from ECS to ICS, followed by osmotically obliged water, this shift can be detected by diffusion-weighted MRI. Later in the evolution of an ischaemic lesion the oedema becomes vasogenic, with disruption of the BBB. Recent imaging studies in patients with head injury suggest that the development of traumatic brain oedema may follow a biphasic time course similar to that of ischaemic oedema. Hydrocephalus is associated in the great majority of cases with an obstruction to the circulation or drainage of CSF, or, occasionally, with overproduction of CSF by a choroid plexus papilloma. In either case, the consequence is a ris

摘要

水的物理化学性质使其能够作为电解质的溶剂,并影响生物系统中多肽链的分子构型,进而影响其功能,尤其是酶促功能。水与电解质的结合决定了细胞体积的渗透调节,并允许建立跨膜离子浓度梯度,而这是神经兴奋和冲动传导的基础。中枢神经系统中的液体分布在脑实质的细胞内和细胞外间隙(ICS、ECS)、脑脊液以及血管腔室——脑毛细血管和小动脉及静脉中。这些不同腔室之间的液体调节性交换发生在血脑屏障(BBB)、脑室室管膜和脉络丛处,以及脑表面的软脑膜处。正常的血脑屏障对水相对通透,但对离子,包括主要电解质的通透性要低得多。脑液调节是在全身液体量控制的背景下进行的,这取决于下丘脑、心脏和肾脏中的渗透压、容量和压力感受器、血管加压素、肾素 - 血管紧张素、醛固酮、心钠素以及洋地黄样免疫反应物质等激素及其各自的作用部位之间的相互作用。脑毛细血管内皮细胞具有特定转运能力的证据,例如高钠钾(+) - ATP酶活性以及在管腔外表面存在钠(+) - 氢(+)反向转运体,这表明脑微血管在脑容量调节和离子稳态方面比其他血管床中的毛细血管发挥更积极的作用。正常的脑ECS占脑体积的12 - 19%,在缺氧、缺血、代谢中毒、扩散性抑制以及传统组织学固定程序中会显著减少。ICS和ECS之间钠、钾和钙的不对称分布是这些阳离子在神经兴奋、传导以及信号转导中发挥作用的基础。脑脊液相对较大的体积以及脑ECS和脑脊液之间许多物质的广泛扩散性交换增强了ECS的离子稳态维持能力。脉络丛除了主要通过生化机制分泌脑脊液(细胞外液还有一小部分额外成分)外,还能主动从血液中转运一些物质(如核苷酸和抗坏血酸),并主动从脑脊液中清除其他物质。与脑脊液分泌不同,脑脊液重吸收主要是一个生物力学过程,被动地依赖于脑脊液 - 硬脑膜窦压力梯度。颅内含水量的病理性增加意味着颅内占位性病变的发展。额外的水分可能以脑水肿的形式在脑实质内弥漫分布,形成囊肿,或者由于脑积水导致脑室体积增加。脑水肿根据病理生理学可分为四类,即血管源性、细胞毒性、渗透性和静水压性。脑水肿问题最为突出的临床情况是肿瘤、缺血和头部损伤。肿瘤周围水肿主要是血管源性的,与血脑屏障功能障碍有关。缺血性水肿最初是细胞毒性的,钠和氯从ECS转移到ICS,随后是渗透压作用下的水转移,这种转移可以通过扩散加权磁共振成像检测到。在缺血性病变的后期,水肿会变成血管源性的,伴有血脑屏障的破坏。最近对头部受伤患者的影像学研究表明,创伤性脑水肿的发展可能遵循与缺血性水肿相似的双相时间进程。脑积水在大多数情况下与脑脊液循环或引流受阻有关,或者偶尔与脉络丛乳头状瘤产生过多脑脊液有关。在任何一种情况下,结果都是升高……

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验