Suppr超能文献

Immunological aspects of nutritional diabetes prevention in NOD mice: a pilot study for the cow's milk-based IDDM prevention trial.

作者信息

Karges W, Hammond-McKibben D, Cheung R K, Visconti M, Shibuya N, Kemp D, Dosch H M

机构信息

Department of Pediatrics, Research Institute, University of Toronto, Canada.

出版信息

Diabetes. 1997 Apr;46(4):557-64. doi: 10.2337/diab.46.4.557.

Abstract

Human epidemiological studies delineated early exposure to intact dietary protein (e.g., most infant formulas) as an environmental risk factor for the development of IDDM. The Trial to Reduce IDDM in the Genetically at Risk (TRIGR), an international IDDM prevention trial, has been designed to determine if avoidance of intact dairy protein in high-risk infants < or =6 months of age can reduce the subsequent diabetes incidence. We here studied the casein hydrolysate-based trial diet (Nutramigen) in NOD mice. When given either continuously or for 10 weeks after weaning, the test diet was highly effective in preventing autoimmune diabetes (32-week incidence: 4.6 vs. 58.8%) and in preserving pancreatic insulin levels, with little effect on islet inflammation. Spleen cells from protected NOD mice failed to adoptively transfer diabetes into irradiated syngeneic recipients. When co-transferred with splenocytes from diabetic donors, cells from diet-protected mice inhibited adoptive diabetes transfer (incidence 50 vs. 94%, P < 0.001). T-cell reactivity to the islet cell autoantigens ICA69 (islet cell antigen 69) and GAD65 developed only in diabetic recipients of spleen cell grafts, indicating that diabetes protection extends to more than one autoantigen. In protected mice, ICA69 T-cell reactivity was not detectable spontaneously nor after priming with this autoantigen; however, priming with the cross-reactive non-self-antigen bovine serum albumin recruited T-cells responsive to ICA69. Thus, diabetes prevention with the clinical trial diet is effective in NOD mice, where it affects some T-cell repertoires and allows development of regulatory cells that interfere with destructive autoimmunity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验