Suppr超能文献

高海拔地区的酸碱平衡与氧气运输。

Acid-base balance and O2 transport at high altitude.

作者信息

Samaja M, Mariani C, Prestini A, Cerretelli P

机构信息

Department of Biomedical Science and Technology, University of Milan, Italy.

出版信息

Acta Physiol Scand. 1997 Mar;159(3):249-56. doi: 10.1046/j.1365-201X.1997.574342000.x.

Abstract

Ear lobe blood pHa, PaCo2, PaO2, and O2 saturation (SaO2) were measured in healthy Caucasians and Sherpas at 3400 m (Namche Bazaar, Nepal, n = 4/5), 5050 m (Pyramid Laboratory, Lobuche, Nepal, n = 20/5) and 6450 m (Camp II of Mt Everest, n = 11/7). In the investigated altitude range, pHa increased progressively with altitude from 7.463 +/- 0.005 (mean +/- SE) to 7.496 +/- 0.006 in Caucasians whereas it remained essentially constant (7.45-7.46) in Sherpas. At all altitudes, PaCO2 was higher in Sherpas than in Caucasians (P < 0.02). By contrast, PaO2 and SaO2 were the same in Caucasians and Sherpas at all investigated altitudes. Moreover, in Caucasians sojourning for 3 weeks at 5050 m, PaCO2 kept decreasing whereas pHa, PaO2 and SaO2 remained constant. These data suggest that; (1) respiratory alkalosis was a common finding both in Caucasians and Sherpas; (2) at 6450 m. Sherpas were less alkalotic due to higher PaCO2 than Caucasians, possibly a consequence of a blunted ventilatory response; (3) at 6450 m, SaO2 and PaO2 were the same in Caucasians and Sherpas despite different PaCO2 values. The latter finding could be the consequence of one or more of the following adjustments in Sherpas: (1) an increased efficiency of alveolar O2 transfer, i.e. smaller alveolar-arterial O2 gradient; (2) a decreased (arterial-mixed venous) O2 difference possibly due to increased cardiac output; (3) a reduced increase of the [2,3-DPG]/[Hb] ratio; but not (4) an elevated gas exchange ratio (R). It is concluded that both physiological and biochemical variables contribute to optimize the O2 transport at altitude. Apparently a more efficient adaptation to hypoxia allows Sherpas to limit alkalosis through a lower ventilatory drive and to maintain SaO2 at the same PaO2 by decreasing the [2,3-DPG]/[Hb] ratio.

摘要

在3400米(尼泊尔南池市场,健康高加索人4例/夏尔巴人5例)、5050米(尼泊尔洛布切金字塔实验室,高加索人20例/夏尔巴人5例)和6450米(珠穆朗玛峰二号营地,高加索人11例/夏尔巴人7例)对健康高加索人和夏尔巴人的耳垂血pHa、动脉血二氧化碳分压(PaCo2)、动脉血氧分压(PaO2)和血氧饱和度(SaO2)进行了测量。在研究的海拔范围内,高加索人的pHa随海拔升高而逐渐增加,从7.463±0.005(均值±标准误)增至7.496±0.006,而夏尔巴人的pHa基本保持恒定(7.45 - 7.46)。在所有海拔高度,夏尔巴人的PaCO2均高于高加索人(P < 0.02)。相比之下,在所有研究海拔高度,高加索人和夏尔巴人的PaO2和SaO2相同。此外,在5050米停留3周的高加索人中,PaCO2持续下降,而pHa、PaO2和SaO2保持不变。这些数据表明:(1)呼吸性碱中毒在高加索人和夏尔巴人中均常见;(2)在6450米,由于PaCO2较高,夏尔巴人的碱中毒程度低于高加索人,这可能是通气反应迟钝的结果;(3)在6450米,尽管PaCO2值不同,但高加索人和夏尔巴人的SaO2和PaO2相同。后一发现可能是由于夏尔巴人有以下一种或多种调整:(1)肺泡氧转运效率提高,即肺泡 - 动脉氧梯度减小;(2)(动脉 - 混合静脉)氧差减小,可能是由于心输出量增加;(3)[2,3 - 二磷酸甘油酸]/[血红蛋白]比值增加减少;但不是(4)气体交换率(R)升高。结论是生理和生化变量均有助于优化高原地区的氧运输。显然,夏尔巴人对缺氧的更有效适应使其能够通过较低的通气驱动力来限制碱中毒,并通过降低[2,3 - 二磷酸甘油酸]/[血红蛋白]比值在相同的PaO2下维持SaO2。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验