Suppr超能文献

艾滋病毒/艾滋病在注射吸毒者中传播的数学模型。

Mathematical modelling of the spread of HIV/AIDS amongst injecting drug users.

作者信息

Greenhalgh D, Hay G

机构信息

Department of Statistics and Modelling Science, University of Strathclyde, Glasgow, UK.

出版信息

IMA J Math Appl Med Biol. 1997 Mar;14(1):11-38.

PMID:9080686
Abstract

In this paper we develop and analyse a model for the spread of HIV/AIDS amongst a population of injecting drug users. Our work is based on a model originally due to Kaplan (1989, Rev. Inf. Diseases 11, 289-98). We start off with a brief literature survey and review; this is followed up by a detailed description of Kaplan's model. We then outline a more realistic extension of Kaplan's model. Then we perform an equilibrium and stability analysis on this model. We find that there is a critical threshold parameter Rzero which determines the behaviour of the model. If Rzero < or = 1 there is a unique disease-free equilibrium, and if Rzero < 1 the disease dies out. If Rzero > 1 this disease-free equilibrium is unstable, and in addition there is a unique endemic equilibrium which is locally stable. If a certain condition is satisfied (and for Kaplan's model this condition is always satisfied), additional complete global-stability results are shown. These results are confirmed and explored further by simulation.

摘要

在本文中,我们开发并分析了一个关于注射吸毒人群中艾滋病毒/艾滋病传播的模型。我们的工作基于最初由卡普兰(1989年,《传染病评论》11卷,289 - 298页)提出的一个模型。我们首先进行简要的文献综述;随后详细描述卡普兰的模型。接着我们概述卡普兰模型一个更符合实际的扩展。然后我们对这个模型进行平衡和稳定性分析。我们发现存在一个关键阈值参数(R_0),它决定了模型的行为。如果(R_0\leq1),存在唯一的无病平衡态,并且如果(R_0\lt1),疾病会消失。如果(R_0\gt1),这个无病平衡态是不稳定的,此外还存在一个唯一的地方病平衡态,它是局部稳定的。如果满足某个条件(对于卡普兰的模型,这个条件总是满足的),会给出额外的完整全局稳定性结果。这些结果通过模拟得到证实并进一步探究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验