Suppr超能文献

利用空间处理改善青光眼视野进展的预测

Improving the prediction of visual field progression in glaucoma using spatial processing.

作者信息

Crabb D P, Fitzke F W, McNaught A I, Edgar D F, Hitchings R A

机构信息

Department of Visual Science, Institute of Ophthalmology, UCL, London, United Kingdom.

出版信息

Ophthalmology. 1997 Mar;104(3):517-24. doi: 10.1016/s0161-6420(97)30281-4.

Abstract

PURPOSE

The authors show how the predictive performance of a method for determining glaucomatous progression in a series of visual fields can be improved by first subjecting the data to a spatial processing technique.

METHOD

Thirty patients with normal-tension glaucoma, each with at least ten Humphrey fields and 3.5 years of follow-up, were included. A linear regression model of sensitivity against time of follow-up determined rates of change at individual test locations over the first five fields (mean follow-up 1.46 years; standard deviation = 0.08) in each field series. Predictions of sensitivity at each location of the field nearest to 1 and 2 years after the fifth field were generated using these rates of change. Predictive performance was evaluated by the difference between the predicted and measured sensitivity values. The analysis was repeated using the same field data subjected to a spatial filtering technique used in image processing.

RESULTS

Using linear modeling of the unprocessed field series, at 1 year after the fifth field, 72% of all predicted values were within +/- 5 dB of the corresponding measured threshold. This prediction precision improved to 83% using the processed data. At the 2-year follow-up field, the predictive performance improved from 56% to 73% with respect to the +/- 5 dB criterion.

CONCLUSIONS

Predictions of visual field progression using a pointwise linear model can be improved by spatial processing without increased cost or patient time. These methods have clinical potential for accurately detecting and forecasting visual field deterioration in the follow-up of glaucoma.

摘要

目的

作者展示了如何通过首先对数据进行空间处理技术来提高在一系列视野中确定青光眼进展方法的预测性能。

方法

纳入30例正常眼压性青光眼患者,每位患者至少有10次 Humphrey 视野检查结果且随访时间为3.5年。对每个视野系列中前五个视野(平均随访1.46年;标准差 = 0.08)中各个测试位置的敏感度与随访时间进行线性回归建模,以确定变化率。使用这些变化率生成第五个视野后最接近1年和2年的每个视野位置的敏感度预测值。通过预测敏感度值与测量敏感度值之间的差异来评估预测性能。使用经过图像处理中使用的空间滤波技术处理的相同视野数据重复该分析。

结果

对于未处理的视野系列,使用线性建模,在第五个视野后1年时,所有预测值中有72%在相应测量阈值的±5 dB范围内。使用处理后的数据,该预测精度提高到了83%。在2年随访视野时,根据±5 dB标准,预测性能从56%提高到了73%。

结论

通过空间处理可以提高使用逐点线性模型对视野进展的预测,而无需增加成本或患者检查时间。这些方法在青光眼随访中准确检测和预测视野恶化方面具有临床潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验