Suppr超能文献

青光眼视野进展预测方法的比较

Comparison of methods to predict visual field progression in glaucoma.

作者信息

Nouri-Mahdavi Kouros, Hoffman Douglas, Ralli Monica, Caprioli Joseph

机构信息

Glaucoma Division, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.

出版信息

Arch Ophthalmol. 2007 Sep;125(9):1176-81. doi: 10.1001/archopht.125.9.1176.

Abstract

OBJECTIVE

To compare performance of pointwise linear regression, Glaucoma Change Probability Analysis (GCPA), and the Advanced Glaucoma Intervention Study (AGIS) method in predicting visual field progression in glaucoma.

DESIGN

Longitudinal visual field data from AGIS. Proportion of progressing eyes and time to progression were the main outcome measures. One hundred fifty-six patients with 8 or more years of follow-up were included. Prediction of outcomes at 8 years was used to evaluate the performance of each method (pointwise linear regression, GCPA, and AGIS).

RESULTS

Visual field progression at 8 years was detected in 35%, 31%, and 22% of patients by pointwise linear regression, GCPA, and the AGIS method, respectively. Baseline mean deviation was not different for nonprogressing vs progressing eyes for all methods (P > .05). Pointwise linear regression and GCPA had the highest pairwise concordance (kappa = 0.58 [SD, 0.07]). The false prediction rates at 4 and 8 years varied between 1% and 3%. Glaucoma Change Probability Analysis predicted final outcomes better than pointwise linear regression at 4 years (P = .001).

CONCLUSIONS

All algorithms had low false prediction rates. Glaucoma Change Probability Analysis predicted outcomes better than pointwise linear regression early during follow-up. Algorithms did not perform differently as a function of baseline damage. Pointwise linear regression and GCPA did not agree well regarding spatial distribution of worsening test locations.

摘要

目的

比较逐点线性回归、青光眼变化概率分析(GCPA)和高级青光眼干预研究(AGIS)方法在预测青光眼视野进展方面的性能。

设计

来自AGIS的纵向视野数据。主要结局指标为进展性眼的比例和进展时间。纳入156例随访8年或更长时间的患者。使用8年时结局的预测来评估每种方法(逐点线性回归、GCPA和AGIS)的性能。

结果

逐点线性回归、GCPA和AGIS方法分别在35%、31%和22%的患者中检测到8年时的视野进展。所有方法中,非进展性眼与进展性眼的基线平均偏差无差异(P>.05)。逐点线性回归和GCPA的两两一致性最高(kappa=0.58[标准差,0.07])。4年和8年时的假预测率在1%至3%之间变化。在4年时,青光眼变化概率分析比逐点线性回归能更好地预测最终结局(P=.001)。

结论

所有算法的假预测率均较低。在随访早期,青光眼变化概率分析比逐点线性回归能更好地预测结局。算法的性能不因基线损害而有所不同。逐点线性回归和GCPA在视野恶化部位的空间分布上一致性不佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验