Suppr超能文献

通过对一系列视野进行建模以检测正常眼压性青光眼的病情进展。

Modelling series of visual fields to detect progression in normal-tension glaucoma.

作者信息

McNaught A I, Crabb D P, Fitzke F W, Hitchings R A

机构信息

Glaucoma Unit, Moorfields Eye Hospital, London, UK.

出版信息

Graefes Arch Clin Exp Ophthalmol. 1995 Dec;233(12):750-5. doi: 10.1007/BF00184085.

Abstract

BACKGROUND

Use of statistical modelling techniques to identify models that both describe glaucomatous sensitivity decay and allow predictions of future field status.

METHOD

Twelve initially normal fellow eyes of untreated patients with confirmed normal tension glaucoma were studied. All had in excess of 15 Humphrey fields (mean follow-up 5.7 years). From this cohort individual field locations were selected for analysis if they demonstrated unequivocal deterioration at the final two fields. Forty-seven locations from five eyes satisfied this criterion and were analysed using curve-fitting software which automatically applies 221 different models to sensitivity (y) against time of follow up (x). Curve-fitting was then repeated on the first five fields, followed by projection to the date of the final field to generate a predicted threshold which was compared to the actual threshold. Competing models were therefore assessed on their performance at adequately fitting the data (R2) and their potential to predict future field status.

RESULTS

Models that provide the best fit to the data were all complex polynomial expressions (median R2 0.93). Other simple expressions fitted fewer locations and exhibited lower R2 values. However, accuracy in predicting future deterioration was superior with these less complex models. In this group a linear expression demonstrated an adequate fit to the majority of the data and generated the most accurate predictions of future field status.

CONCLUSIONS

A linear model of the pointwise sensitivity values against time of follow-up can provide a framework for detecting and forecasting glaucomatous field progression. Linear modelling allows the clinically important rate of sensitivity loss to be estimated.

摘要

背景

运用统计建模技术来识别既能够描述青光眼敏感性衰退又能预测未来视野状况的模型。

方法

对12例确诊为正常眼压性青光眼的未治疗患者的初始正常对侧眼进行研究。所有患者均有超过15次的 Humphrey 视野检查(平均随访5.7年)。从该队列中,如果在最后两次视野检查中显示明确恶化,则选择个体视野位置进行分析。五只眼睛的47个位置符合该标准,并使用曲线拟合软件进行分析,该软件自动将221种不同模型应用于敏感性(y)与随访时间(x)的关系。然后在前五个视野上重复曲线拟合,接着投影到最后一次视野检查的日期以生成预测阈值,并将其与实际阈值进行比较。因此,根据竞争模型对数据的拟合性能(R2)及其预测未来视野状况的潜力进行评估。

结果

与数据拟合最佳的模型均为复杂多项式表达式(中位数R2为0.93)。其他简单表达式拟合的位置较少且R2值较低。然而,这些不太复杂的模型在预测未来恶化方面的准确性更高。在这一组中,线性表达式对大多数数据显示出充分拟合,并对未来视野状况产生了最准确的预测。

结论

针对随访时间的逐点敏感性值的线性模型可为检测和预测青光眼视野进展提供一个框架。线性建模能够估计临床上重要的敏感性丧失率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验