Suppr超能文献

乌贼神经元中去极化诱导的Ca2+通道失活减慢

Depolarization-induced slowing of Ca2+ channel deactivation in squid neurons.

作者信息

McFarlane M B

机构信息

Department of Molecular and Cellular Physiology, Hopkins Marine Station of Stanford University, Pacific Grove 93950, USA.

出版信息

Biophys J. 1997 Apr;72(4):1607-21. doi: 10.1016/S0006-3495(97)78807-6.

Abstract

Properties of squid giant fiber lobe (GFL) Ca2+ channel deactivation (closing) were studied using whole-cell voltage clamp. Tail currents displayed biexponential decay, and fast and slow components of these tails exhibited similar external Ca(2+)- and voltage-dependence. Both components also shared similar inactivation properties. Increasing duration pulses to strongly depolarizing potentials caused a substantial slowing of the rate of deactivation for the fast component, and also led to an apparent conversion of fast tail currents to slow without an increase in total tail amplitude. A five-state kinetic model that computed the closing of channels differentially populating two open states could simulate the kinetic characteristics of GFL Ca2+ pulse and tail currents over a wide voltage range. The kinetics of the proposed state transition was very similar to the time course of relief of omega-Agatoxin IVA Ca2+ channel block with long pulses. A similar model predicted that the relief of block could occur via faster toxin dissociation from the second open state. Thus, GFL Ca2+ channels possess a unique form of voltage-dependent gating modification, in which maintained prior depolarization leads to a significant delay to channel closure at negative potentials. At the nerve terminal, amplified Ca2+ signals generated by such a mechanism might alter synaptic responses to repetitive stimulation.

摘要

利用全细胞膜片钳技术研究了鱿鱼巨纤维叶(GFL)Ca²⁺通道失活(关闭)的特性。尾电流呈现双指数衰减,且这些尾电流的快、慢成分表现出相似的胞外Ca²⁺和电压依赖性。两个成分还具有相似的失活特性。增加持续时间的脉冲至强去极化电位会导致快成分的失活速率大幅减慢,还会导致快尾电流明显转变为慢尾电流,而总尾电流幅度并未增加。一个计算通道关闭的五态动力学模型,该模型中两个开放状态的通道占据情况不同,可以模拟宽电压范围内GFL Ca²⁺脉冲和尾电流的动力学特征。所提出的状态转换动力学与用长脉冲解除ω-芋螺毒素IVA对Ca²⁺通道阻滞的时间进程非常相似。一个类似的模型预测,阻滞的解除可能通过毒素从第二个开放状态更快解离而发生。因此,GFL Ca²⁺通道具有一种独特形式的电压依赖性门控修饰,即先前的持续去极化会导致在负电位时通道关闭出现显著延迟。在神经末梢,由这种机制产生的放大的Ca²⁺信号可能会改变对重复刺激的突触反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/427d/1184355/656f0d152495/biophysj00037-0132-a.jpg

相似文献

1
Depolarization-induced slowing of Ca2+ channel deactivation in squid neurons.
Biophys J. 1997 Apr;72(4):1607-21. doi: 10.1016/S0006-3495(97)78807-6.
2
Spatial localization of calcium channels in giant fiber lobe neurons of the squid (Loligo opalescens).
Proc Natl Acad Sci U S A. 1996 May 14;93(10):5067-71. doi: 10.1073/pnas.93.10.5067.
3
Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels.
J Neuroendocrinol. 2005 Jan;17(1):1-9. doi: 10.1111/j.1365-2826.2005.01267.x.
4
State-dependent nickel block of a high-voltage-activated neuronal calcium channel.
J Neurophysiol. 1998 Oct;80(4):1678-85. doi: 10.1152/jn.1998.80.4.1678.
5
Alteration of P-type calcium channel gating by the spider toxin omega-Aga-IVA.
Biophys J. 1997 May;72(5):2117-28. doi: 10.1016/S0006-3495(97)78854-4.
6
8
Axonal calcium entry during fast 'sodium' action potentials in rat cerebellar Purkinje neurones.
J Physiol. 1996 Sep 15;495 ( Pt 3)(Pt 3):641-7. doi: 10.1113/jphysiol.1996.sp021622.
9
Cadmium block of squid calcium currents. Macroscopic data and a kinetic model.
J Gen Physiol. 1991 Oct;98(4):751-70. doi: 10.1085/jgp.98.4.751.
10
Fast inactivation of delayed rectifier K conductance in squid giant axon and its cell bodies.
J Gen Physiol. 1997 Apr;109(4):435-48. doi: 10.1085/jgp.109.4.435.

引用本文的文献

2
Gating of the HypoPP-1 mutations: II. Effects of a calcium-channel agonist BayK 8644.
Pflugers Arch. 2007 Jul;454(4):605-14. doi: 10.1007/s00424-007-0228-0. Epub 2007 Mar 1.
3
Interactions among toxins that inhibit N-type and P-type calcium channels.
J Gen Physiol. 2002 Apr;119(4):313-28. doi: 10.1085/jgp.20028560.
4
Measurement of calcium channel inactivation is dependent upon the test pulse potential.
Biophys J. 1999 Jun;76(6):3076-88. doi: 10.1016/S0006-3495(99)77460-6.
5
Overview of voltage-dependent calcium channels.
J Bioenerg Biomembr. 1998 Aug;30(4):299-312. doi: 10.1023/a:1021977304001.
6
Alteration of P-type calcium channel gating by the spider toxin omega-Aga-IVA.
Biophys J. 1997 May;72(5):2117-28. doi: 10.1016/S0006-3495(97)78854-4.

本文引用的文献

1
Interaction of Ca2+ agonist and depolarization on Ca2+ channel current in guinea pig detrusor cells.
J Gen Physiol. 1995 Dec;106(6):1211-24. doi: 10.1085/jgp.106.6.1211.
2
Spatial localization of calcium channels in giant fiber lobe neurons of the squid (Loligo opalescens).
Proc Natl Acad Sci U S A. 1996 May 14;93(10):5067-71. doi: 10.1073/pnas.93.10.5067.
3
Excessive repolarization-dependent calcium currents induced by strong depolarizations in rat skeletal myoballs.
J Physiol. 1995 Nov 15;489 ( Pt 1)(Pt 1):41-53. doi: 10.1113/jphysiol.1995.sp021028.
4
Functional diversity of L-type calcium channels in rat cerebellar neurons.
Neuron. 1993 Mar;10(3):437-50. doi: 10.1016/0896-6273(93)90332-l.
5
Shaker potassium channel gating. I: Transitions near the open state.
J Gen Physiol. 1994 Feb;103(2):249-78. doi: 10.1085/jgp.103.2.249.
6
Block of Ca channels in rat central neurons by the spider toxin omega-Aga-IIIA.
J Neurosci. 1994 May;14(5 Pt 1):2844-53. doi: 10.1523/JNEUROSCI.14-05-02844.1994.
7
The spatial distribution of calcium signals in squid presynaptic terminals.
J Physiol. 1993 Dec;472:573-93. doi: 10.1113/jphysiol.1993.sp019963.
9
A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium.
J Neurosci. 1994 Oct;14(10):5885-902. doi: 10.1523/JNEUROSCI.14-10-05885.1994.
10
Selective potentiation of a novel calcium channel in rat hippocampal neurones.
J Physiol. 1994 Nov 1;480 ( Pt 3)(Pt 3):475-84. doi: 10.1113/jphysiol.1994.sp020376.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验