Suppr超能文献

The anti-cancer agent distamycin A displaces essential transcription factors and selectively inhibits myogenic differentiation.

作者信息

Taylor A, Webster K A, Gustafson T A, Kedes L

机构信息

Department of Biological Sciences, Wichita State University, KS 67208, USA.

出版信息

Mol Cell Biochem. 1997 Apr;169(1-2):61-72. doi: 10.1023/a:1006898812618.

Abstract

The anticancer drug, distamycin A, alters DNA conformation by binding to A/T-rich domains. We propose that binding of the drug to DNA alters transcription factor interactions and that this may alter genetic regulation. We have analyzed the effects of distamycin A upon expression of the muscle-specific cardiac and skeletal alpha-actin genes which have A/T-rich regulatory elements in their promoters. Distamycin A specifically inhibited endogenous muscle genes in the myogenic C2 cell line and effectively eliminated the myogenic program. Conversely, when 10T1/2C18 derived pleuripotential TA1 cells were induced to differentiate in the presence of distamycin A, adipocyte differentiation was enhanced whereas the numbers of cells committing to the myogenic program decreased dramatically. Using the mobility shift assay distamycin A selectively inhibited binding of two important transcription factors, SRF and MEF2, to their respective A/T-rich elements. The binding of factors Sp1 and MyoD were not affected. The inhibition of factor binding correlated with a repression of muscle-specific promoter activity as assayed by transient transfection assays. Co-expression of the myoD gene, driven by a distamycin A-insensitive promoter, failed to relieve the inhibition of these muscle-specific promoters by distamycin A. Additionally, SRF and MEF2 dependent promoters were selectively down regulated by distamycin A. These results suggest that distamycin A may inhibit muscle-specific gene expression by selectively interfering with transcription factor interactions and demonstrate the importance of these A/T-rich elements in regulating differentiation of this specific cell type.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验